
 

CE 6405 Soil Mechanics Notes 
  
 
 

UNIT-I 
 

INTRODUCTION 
 
Nature of soil – Problems with  soil – phase relation – sieve analysis –sedimentation – analysis – 
Atterberg limits – classification for engineering purposes – BIS classification  system – soil 
compaction – factors affecting compaction – field compaction methods  
    

TWO MARK QUESTIONS AND ANSWERS 
 

1. Define: Water Content (w) 
 Water content is defined as the ratio of weight of water to the weight of solids in a given 
mass of soil. 

 
2. Density of Soil: Define 
  Density of soil is defined as the mass the soil per unit volume. 
 
3. Bulk Density: Define ( ) 
  Bulk density is the total mass M of the soil per unit of its total volume. 
 

4. Dry Density: Define ( ) 
  The dry density is mass of soils per unit of total volume of the soil mass. 
 

5. Define: Saturated Density ( ) 
  When the soil mass is saturated, is bulk density is called saturated density  
 

6. Define: Submerged Density ( ) 
The submerged density is the submerged mass of the soil solids per unit of total volume 
of the soil mass. 

 
7. Define: Unit Weight of Soil Mass  
 The unit mass weight of a soil mass is defined as it s weight per unit volume. 
 
8. Bulk Unit Weight: Define ( ) 
  The bulk weight is the total weight of a soil mass per unit of its total volume. 
 

9. Dry Unit Weight: Define ( ) 
The dry unit weight ifs ht weight of solids per unit of its total volume of the soil mass. 

10. Unit Weight of Solids: Define ( ) 
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The unit weight of soil solids is the weight of soil solids per unit volume of solids. 
 

11. What Is Submerged Unit Weight ( ) 
The submerged unit weight is the submerged weight of soil solids per unit of the total 
volume of soils. 

 

12. What Is Saturated Unit Weight ( ) 
 
 Saturated unit weight is the ratio of the total weight of a saturated soil sample to its total 
sample. 
 
13. What Is Void Ratio? (e) 
     Void ratio of a given soil sample is the ratio of the volume of soil solids in the given soil 
mass. 
 
14.  What is Porosity? (n) 
 The porosity of a given soil sample is the ratio of the volume of voids to the total volume 
of the given soil mass. 
 
15. Degree of saturation: Define (Sr)  
 
 The degree of saturation is defined as the ratio of the volume of water present in  a given 
soil mass to the total volume of voids on it. 
 
16. Define: percentage of air voids (na) 
 Percentage of air voids is defined as the ratio of the volume of air voids to the total 
volume of soil mass. 
 
17. Air content: Define (ac) 
  The air content is defined as the ratio of volume of air void to the volume of voids. 
 
18 .Define: Density Index ( ID) or Relative Compactive 
  The density index is defined as the ratio of the differences between the voids ratio of the 
soil in the loosest state and its natural voids ratio ratio & to the differences between voids ratio in 
the loosest and densest states. 
 
19. What is compaction? 
 Compaction is a process by which the soil particles are artificially rearranged and packed 
together into a closer strata of contact by mechanical means in order to decrease the porosity ( or 
voids ratio) of the soil and thus increase its dry density. 
 
 
 
20. Aim of the compaction 
 i) To increase the shear strength soil 
 ii) To improve stability and bearing capacity 
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 iii) To reduce the compressibility 
 iv) To reduce the permeability of the soil. 
21. What are the methods available for sieve analysis?  
 a) Dry sieve Analysis  
 b) Wet sieve analysis  
 
22. Atterberg limits: define  

The limit at which the soil, changes from one state to another state, is termed as atterberg 
limits. 

23. Liquid limit: define  
Is the water content at which the soil, changes from liquid to plastic state liquid. 

24. What is plastic limit?  
The maximum water content at which, soil changes from plastic to semi-solid state. 

  
25. Define: percentage of air voids (na) 
 Percentage of air voids is defined as the ratio of the volume of air voids to the total 
volume of soil mass. 
 
 

16 MARKS QUESTIONS AND ANSWERS 
 
 

1. Writes notes on nature of soil?  
 

a) The stress strain relation ship for a soil deposit is nonlinear .hence the difficulty in 
using easily determinable parameter to describe its behavior. 

 
b) Soil deposits have a memory for stress they have undergone in their geological 

history. Their behavior is vastly influenced by their stress history; time and 
environment are other factors which may alter their behavior. 

 
c) Soil deposit being for from homogenous , exbit properties which vary from 

location  
 
d) As soil layers are buried and hidden from view. One has to rely on test carried out 

on small samples that can be taken; there is no grantee that the soil parameters are 
truly representative of the field strata 

 
e) No sample is truly undisturbed. in a soil which is sensitive to disturbance; the 

behavior submersed from the laboratory tests may not reflect the likely behavior 
of the field stratum. 

 
2. Explain the problems related to soils. 

 
Soils is, the ultimate foundation material which supports the structure the proper 

functioning of the structure will, therefore, depend critically element resting on the 



subsoil. Here the term foundation is used in the conventional sense. A substructure that 
distributes the load to the ultimate foundation, namely, the soil. 
 

From ancient times, man has used soil for the construction of tombs, monuments, 
dwellings and barrages for storing water. In the design and construction of underground 
structures such as tunnels, conduits, power houses, bracings for excavations and earth 
retaining structure, the role of soil is again very crucial, since the soil is in direct contact 
with the structure, it acts as a medium of load transfer and hence for any analysis of 
forces acting on such structure, one has to consider the aspects of stress distribution 
through the soil. 

 
The structure, two causes stresses and strain in the soils, while the stability of the 

structure itself is affected by soil behavior. The class problems where the structure and 
soil mutually interact are known as soil- structure interaction problems. There are a host 
of other civil engineering problems related to soils. For designing foundations for 
machines such as turbine, compressors, forges etc…. which transmit vibrations to the 

foundation soil, one has to understand the behavior of soil under vibratory loads. 
 
The effect of quarry blasts, earthquakes and nuclear explosions on structures is 

greatly influenced by the soil medium through which the shock waves traverse. In these 
parts of the world which experience freezing temperatures, problems arise because the 
soil expand upon freezing and exert a force on the structure in the contact with them. 

Thawing (due to melting ice) of the soil results in a soil results in a loss of 
strength in the soil. Structure resting on these soils will perform satisfactorily only if 
measures are taken to prevent frost heave or designed to withstand the effects of the 
freezing and thawing 

 
 

3. Prove that:   e =  
Soil element in terms of   ew and e 
    

 From figure: ew  -- volume of water  
                       e   -- Volume of voids  
                       G - specific gravity 
 
The volume of solids is equal to unity 
 
 

  Sr =  =  
   
  ew =  e Sr         →  ( 1) 
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      ew   = e, when fully saturated sample. 
   

  w = Ww/Wd =  

 

 

  G =      →  
   

                       w =   =  

            
 

 ew =  w.G     →   (2 ) 
 
From equation (1) & (2) 
 

  e =    →   (3) 
When fully saturated sample, Sr = 1 and   w = w sat 

 

  e   = w sat. G 
 

4.  Prove that   :   

 na =   
 

             na =  
   
 
  Va = Vv -  Vw  = e - ew  

 

  

  V = Vs + Vv   = 1+e 
  
   
 

n a =  
 
 
 ew  =  e Sr       from equ         -→(1) 
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  n a   = e - e Sr  / (1+e) = e (1-  Sr)  /  ( 1+e)   
 
  n a   =  e (1-  Sr)  /  ( 1+e)    →  (4) 

 
5. Prove that:      

 n a  = n ac          
 
 

  ac   =     :;;   n  =  
   

   n a   =  =  n ac         →( 5) 
 
6. Prove that: 

 =     
 

    =  
 

 =  
 
Vs = 1(refer soil element in terms of ‘e’ figure) 
 
V = (1+e) 
 

   =  
    

 = G.  
 

 =   → (6) 
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  1+e =  

    e = 1 
 
 From figure (ii) soil element in terms of ‘n’ 
   

  Vs = = (1-n) G   →   (7) 
7 .a. Prove that: 

= G (1-n) + .n 
 

  = wsat / V 
 
 
        = ( Wd   +   W w  ) / V  
 

        =  
 
 From, fig (ii) 
 
                Vs = 1, Vw = e, and V = 1+e 
 

  =  
 

        =  
 

   =   →   (8) 
 
 From fig (ii)  
 
               Vs=1-n, V w= n, V=1 
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 = → (9) 
 
 
 
7. b. Prove that: 

 =  
 

   = W/ V=  
 
 

  Refer: figure (iii)  
 
  

Vs = 1, Vw = e, and V = 1+e 
 
  

  =  
 

  s =G   &    ew  = e Sr  
 
 

=       → (10) 
 
if the soil is perfectly dry,Sr = 0 
 
 
  When Sr =1 
 

  Become =  →   (11) 
 

8. a. Prove that: =  
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    = -  

    =  →   (12) 
 

8. b.Prove that :  =  
 
 

Water content : w = Ww / Wd 
 

  1+ w = = W/ Wd 
 
  Wd= W / (1+w)     → (13) 
 
 

           =Wd /V = W / (1+w) V 
 

  = → (!4) 
 
 
9. Prove that  

   = - (1-n)  
 
   From fig (iii) 
 

   (Wd) sub=1. - 1.  
 

   (Wd)sub=(G-1)  
 
        

V= 1+e 
   From equation  (12) 
 

   = (Wd) sub. /V 
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        From equation (6) 
   

   =  
 
                 1 / (1+e) =1-n 
 

                          = - (1-n) → (15) 
 

 
10.a . Prove that        

= + Sr( - ) 
 
 
From equation (10)  

=  
       

 = +       
 

= +Sr     [ - ] 
 

= + Sr (( - )    →    (16) 
 
10.b. Prove that:       

 =  
 

  From equation (6) 
 

   =  
 
                      

   From equation (3) 
 

   =   → (17) 
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            When Sr= 1, =  →(17.a) 
 
11. Prove that  

    =   
 
   From fig (i) 
 
                                   V= Va +  Vw + Vs  
 

    = Va  +Ww / + Wd /  
 

1 =  
 

    1 =  
 

  1- =  
 

1 na =  
 

    =  
 
 
12. A soil sample has a porosity of 40% .the specific gravity of solids 2.70,  
Calculate (a) void ratio  
   (b) Dry density  
   (c) Unit weight if the soil is 50% saturated 
     (d) Unit weight if the soil is completely saturated  
  Solution: 

 (a)  e   =  
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(b)   = =  KN / m3 

 

(c) e =  
 

  

      w = =  
 

     =   KN / m3 

 

 

(d) When the soil is fully saturated 
   
     e= wsat.G 
 
    wsat = e / G = 0.667 /2.7 = 0.247 
    

    = G (1-n) + .n 
 
   =2.7 * 9.81(1- 0.4) + 9.81*0.4 = 19.81 KN / m3 

 
13. An undisturbed sample of soil has a volume of 100 cm3 and mass of 190.g. On oven 
drying for 24 hrs, the mass is reduced to 160 g. If the specific gravity grain is 2.68, 
determine the water content, voids ratio and degree of saturation of the soil. 
 
Solution: 
  Mw= 190-160= 30 g 
 
 
  Md = 160 g 
 
  W= Mw / Md= 30 / 160 = 0.188 = 18.8 % 
 
  Mass of moist soil = M = 190 g 
 

Bulk density = M/ V = 190 / 100= 1.9 g/ cm3 

 

  = 9.81 * = 9.81* 1.9= 18.64 KN / m3 
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      =  KN / m3 

   

  e   =  
 

   = = 0.67 
 
 

  Sr =  
 
14. The in-situ density of an embankment, compacted at a water content of 12 % was 
determined with the help of core cutter. The empty mass of the cutter was 1286 g and 
the cutter full of soil had a mass of 3195 g, the volume of the cutter being 1000 cm3. 
Determine the bulk density, dry density and the degree of saturation of the 
embankment. 
 
 If the embankment becomes fully saturated during rains, what would be its water 
content and saturated unit weight / assume no volume change in soil on saturation 
.Take the specific gravity of the soil as 2.70. 
 
 Solution: 
 
  Mass of soil in cutter  
    M= 3195- 1286= 1909 g 
 
  Bulk density = M/ V = 1909 / 1000 = 1.909 g/ cm3 

 

  Bulk unit weight = 9.81*  
 
        = 9.81* 1.909= 18.73 KN / m3 

 

    = =  KN / m3    
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  At saturation: 
    Since the volume remains the same, the voids ratio also remains 
unchanged. 
     e   = w sat. G 
     w sat.=e /G = 0.584 / 2.7 = 0.216 =21.6% 

     = =  KN/ m3 

 
15. The in-situ percentage voids a sand deposit is 34 percent .for determining the density 
index , dried sand from the stratum was first filled loosely in a 1000 cm3 mould and was 
then vibrated to give a maximum density . The loose dry mass in the mould was m1610 g 
and dense dry mass at maximum compaction was found to be 1980 g. Determine the 
density index if the specific gravity of the sand particles 2.67  
 
Solution,           
  n = 34% 
  e= n / (1-n) = 0.34 /(1-0.34) = 0.515 
 
 

   KN/ m3 

 

   KN/ m3 

 

  emin =  
 

  emax=  
 
 
  ID = (emax –e)/ (emax  - emin )=(0.659 -0.515) / ( 0.659 – 0.349)  
 
      = 0.465 = 46.5 % 
aaaaa 
16. The mass specific gravity (apparent gravity) of a soil equals 1.64.  The specific gravity 
of solids is 2.70. Determine the voids ratio under assumption that the soil is perfectly dry 
.What would be the voids ratio, if the sample is assumed to have a water content of 8 
percent? 
  Solution:  
 

When the sample is dry 
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   Gm =  
 

    KN/ m3 

 

   e= =  
 
  When the sample has water content 
 
    w = 8 % 
 

     KN/ m3 

 

 

    = =  KN/ m3 

 

    e= =  
 
17. A natural soil deposit has a bilk unit weight of 18.44 KN/ m3 , water content of 5 % 
.calculate the amount of water required to the added to 1 m3 of soil to raise the water 
content to 15 %. Assume the void ratio to remain content .What will then be the degree of 
saturation? Assume G= 2.67  
 
 Solution: 
   = 18.44 KN/ m3

; w = 5% 
 

   d  
= =  KN/ m3 

 

   w = Ww / Wd = 0.05 
 
   For one cubic meter of soil, v = 1 m3 

      
   Wd = d  .  V= 17.56 * 1 = 17.56 KN. 
 
   Ww= 0.05* Wd= 0.05 * 17.56= 0.878 KN 
 
   Vw = Ww / d =0.878 / 9.81 = 0.0895 m3 
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  Later,      when w = 15 % 
 
  Ww = w. Wd = 0.15 * 17.56 = 2.634 KN 
 
  Vw = Ww / w = 2.534 / 9.81 = 0.2685 m3 

 

Hence additional water required   to raise the water content from 5 %  
to15%  = 0.2685 – 0.0895 = 0.179 m= 179 liters. 
 

  Voids ratio, e = = 0.49 
 
 
After the water has been added ‘e ‘remains the same  
 
  Sr = w.G / e = 0.15 * 2.67 / 0.49= 0.817= 81.7% 
 
 

18. Calculate the unit weighs and specific gravities of solids of (a) soil composed of pure 
quartz and (b) a soil composed of 60 % quartz, 25% mica, and 15% iron oxide. Assume 
that both soils are saturated and have voids 0f 0.63. Take average and for iron oxide = 3.8 
 
 Solution  

a) For the soil composed of pure Quartz,  
 

G for quartz = 2.66 

sat = =  KN/ m3 

b) for the composite soil,  
 

G average= (2.66*0.6) + (3.* 0.25) + (3.8 *0.15) 
      =1.6 + 0.75 + 0.57= 2.92 

sat = =  KN/ m3 

 

19. A soil has a bulk unit weight of 20.22 KN/ m3 and water content of 15%. Calculate the 
water content if the soil partially dries to a unit weight of 19.42 KN/ m3.and voids ratio 
remains unchanged. 
 
Solution: 
  Before drying, 
 

 = 20.11 KN/ m3 

 

d = 20.11 / (1 + 0.15) = 17.49 KN/ m3 
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 Since after drying, e does not change, V and d, are the same, 
 
    =

d(1+ w) 
 
   1+w =  / d =19.42 / 17.49= 1.11 
 
   w= 1.11 – 1 = 11% 
 
20. A cube of dried clay having sides 4 cm long has a mass of 110 g. The same cubes of soil, 
when saturated at unchanged volume, has mass of 135 g. Draw the soil element showing the 
volumes and weights of the constituents, and then determine the specific gravity of soil 
solids and voids ratio. 
 
Solution: 
   Volume of soil = (4)3 = 64 m3 
  Mass water after saturation 
   = 135- 110= 25 g 
   
  Volume of solids = 25 cm3 

  Volume of solids = 64- 25 = 39 m3 
   Ms = 110 g 
 
 

    

    e =  
  
21. a. Explain Dry sieve analysis  
  The soil should be oven-dry, it shouldn’t contain any lump, if necessary, it should be 
pulverized. If organic matters in the soil;, it taken air – dry instead of oven dry. The sample is 
sieved through a 4.75 mm IS sieve .the portion retained on the sieve is gravel fraction or plus 
4.75 mm material .then gravel fraction is sieved through the set of coarse sieves manually or 
mechanical shaker. 
  The minus 4.75mm fraction is sieves through the set if fine sieves .the sample is placed in 
the top sieves and the set of sieves is kept on a mechanical shaker. Normally, 10 minutes of 
shacking is sufficient for most soils. The mass of soil retained on each sieve and on pan is 
obtained to the nearest 0.1gm 
            Suitability: cohesion less soils with little or no fines. 
 
21. b. Explain wet sieve Analysis. 
  If the soil contains a saturated a substantial quantity of fine particles,  
A wet analysis required. A soil sample in the required quantity is taken, using a rifer an  
dried in an oven . The dried sample is taken in a tray and sacked with water. The samples stirred 
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and lift soaking period of at least one hour.  
  
 The slurry is taken sieved through a 4.75 mm IS sieve, and washed with a 
 jet of water . The material retained on the sieve is the gravel faction. The material retained on 
the 75  sieve is collected and dried an oven. It is then sieved  through the set of the fine 
sieves  of the size 2 mm,1 mm, 600  ,425  , 212  , 150  ,and 75  

The material that would have been retained on the pan is equal to the total  
mass of soil minus the sum of the masses of material retain on all sieves. . 
 
22. Explain the analysis of sedimentation by pipette method. 

The method is based on stokes law. 
 
Stokes law: 
   The velocity with which a grain settles down in suspension , all other 
factors being equal , is dependent upon the shape, weight  and size of the grains. 
 
Assumption: 
  The coarser particles, will settle more than the finer ones. 
There are 3 forces are there. 

i) Drag force  
ii) Weight of the sphere  
iii) Buoyant force 

The resisting force due to drag resistant offered by a fluid. 
  

             R= 6  r u 
  
  Where, 

                               = dynamic viscosity in KN.s/m2 

                                         r= radius in m 
   u = velocity in m/s 
 

Weight of the sphere =  

                               =  
 
 

Buoyant force =  
 

                     =  
  Equilibrium of forces in vertical direction 

  
                   W   = U + FD 
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 If spherical particle falls through a height He  
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                 D =  
               

                  D = M  
   

 Where M   is a factor, equal to     
 
 
23. What are the limitations of sedimentation analysis? 
  

i) The sedimentation analysis gives the particle size in terms of equilant diameter, 
which is less than the particle size given by sieve analysis. The soil particles are 
not spherical. 

ii) Stokes’ law is applicable only when the liquid is infinite. The presence of walls 
of the jar affects the results to same extent. 

iii) In stokes law, it has been assumed that only one sphere settles, and there is no 
interference from other spheres. In sedimentation analysis, as many particles 
settled simultaneously, there is some interference. 

iv) The sedimentation analysis cannot be used for particles larger than 0.2 mm as 
turbulent conditions develop and stokes law isn’t applicable. 

 
  
  24. Explain the soil classification 
 
 a) Classification based on grain size  
 b) Textural classification  
 c) AASHTO classification 
 d) Unidefined soil classification 
 

a) Classification based on grain size  
 
This classification based on grain size. In this system the terms clay, silt, and gravel are 
used to indicate only particle size and not to signify nature of soil type. 
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b) Textural classification 
 
The classification of soil exclusively based on particle size and their percentage 
distribution is known as textural classification .this system specifically names the soil 
depending on the percentage of sand, silt and clay. 
 
 

b) AASHTO classification 
 
This system is developed based on the particle size and plasticity characteristic of soil 
mass .A soil is classified by proceeding from left to right on the chart to find first the 
group into which the soil test data will fill. Soil having fine fraction are further classified 
based on their group index  
 Group index = (F-35) [0.2 + 0.005(L.L – 40)] + 0.01(F-15) (P.I-10) 
 F-   Percentage passing 0.075 mm size 
 LL-Liquid Limit  
 P.I – Plasticity Limit 

       d) Unified soil classification system  
This system is based on the both grain size and plasticity characteristic of soil. IS system 
divides soils into three major groups coarse grained and organic soils and other 
miscellaneous soil materials. Coarse grained soils are those with more than 50 % of  the  
material larger than 0.075 mm size .Coarse grained soils are further divided grained soils 
are further divided in to gravels , sands. Fine grained soils are those for which more than 
50 % of soil finer than 0.05mm sieve size.  
They divided into three subdivisions as silt, clay and organic salts and clays. based on the 
their plasticity nature they are added with L,M,N and H symbol to indicate low plastic , 
medium plastic  and high plastic respectively. 

 
 

 
25. Explain the BIS classification for soil system  
 

Indian standard classification (ISC) system adopted by Bureau of Indian Standards is in 
many aspects. 
 Soils are divided onto three broad divisions  
(i) Coarse-grained soils, when 50% or more of the total material by weight is retained on    
75 μ IS Sieve 
(ii) Fine – grained soils, when more then 50% of the total material passes 75μ IS                          

sieve 
(iii) If the soil is highly organic and contains a large percentage of organic matter and 
particles of decomposed vegetation, it is kept in a separate category marked as peat. 

 
1. Coarse – grained soils. 

Coarse – grained soils are subdivided into gravel and sand. The soil is termed 



gravel and sand. The soil is termed gravel (G) where more than  50% Coarse 
fraction (plus 75 μ) is retained on 4.75mm IS sieve ,and termed sand (s) if  more 

than 50 % of the coarse friction is smaller than 4.75 mm IS sieve. 
2. Fine Grained  

Fine – grained soils are further divided into three subdivisions, depending upon 
the values of the liquid limit. 
 a) Silts and clays of low compressibility – liquid limit less than 35  
      (Represented by symbol H) 
 b) Silts and clays of medium compressibility- these soils have liquid limit 
greater than 35 but less than 50. 
 c) Silts and clays of high compressibility- these soils have liquid limit 
greater than 50(Represented by symbol H).  

 
26. Different between consolidation and compaction 
 
S.NO CONSOLIDATION COMPACTION 
1 It is a gradual process of reduction of 

volume under sustained, static loading. 
It is a rapid of reduction of volume 
mechanical mean such as rolling , 
tamping , vibration. 

2 It causes a reduction in volume of a 
saturated soil due to squeezing out of 
water from the soil. 

In compaction, the volume of 
partially saturated soil decreases of 
air the voids at the unaltered water 
content. 

3 Is a process which in nature when 
saturated soil deposits are subjected to 
static loads caused by the weight of the 
building  

Is an artificial process which is 
done to increase the density of the 
soil to improve its properties 
before it is put to any use. 

 
 
27. What are the factors affecting compaction? Explain in brief? 
 i) Water content  

a) At lower water content, the soil is stiff and others more resistance to                                             
compaction. 
b) As water content is increases, the soil particles get lubricated. 
c) Dry density of the soil increases with increases in the water content till the 
optimum water content is reached. 
d) After the optimum water content is reached, it becomes more difficult to force 
air out and to further reduce the air voids. 

 ii) Amount of compaction 
At water content less than the optimum, the effect of increased compaction is 
more predominant. At water content more than optimum, the volume of air voids 
becomes almost constant and the effect of increased compaction is of significant. 

 iii) Type of soil  
In general, coarse – grained soils can be compacted to higher dry density than fine 
grained soils. With the addition of even a small quantity of fines to a coarse-
grained soil, the soil attains a much higher dry density for the same compactive 
effort. 



Cohesive soils have air voids .Heavy clays of very high plasticity have very low 
dry density and very high optimum water content 
 

iv) Method of compaction 
The dry density achieved depends not only upon the amount of compactive effort; 
the dry density will depend upon whether the method of compaction utilizes 
kneading action, dynamic or static action. 
  

v)Admixture  
The compaction characteristic of the soils is improved by adding other materials 
known as admixtures. Ex; lime, cement and bitumen 
. 

28. What are the different methods of compaction adopted in the field? 
  

i) Tampers.  
   A hand operated tamper consists of block iron, about 3 to 5 Kg o mass, 
attached to a wooden rod. The tamper is lifted for about 0.30m and dropped on the soil to be 
compressed. Mechanical Tampers operated by compressed air or gasoline power. 
 ii) Rollers  

a) smooth – wheel rollers 
b) pneumatic – tyred rollers 
c) Sheep- foot rollers. 
 

a) smooth – wheel rollers 
Smooth – wheel rollers are useful finishing operations after compaction of 
fillers and for compacting granular base causes of highways. 

b) Pnumatic – tyred rollers  
Pneumatic – tyred rollers use compressed air to develop the required inflation 
pressure. 
 The roller compactive the soil primarily by kneading action. These rollesrs 
are effecting for compacting cohesive as well as cohesion less soils. 

c) Sheep – foot rollers 
The sheep – foot roller consists of a hollow drum with a large number of small 
projections (known as feet) on its surface. The drums are mounted on a steel 
frame. The drum can fill with water or ballast increases the mass. The contact 
pressure is generally between 700 to 4200 KN/m2. 
 

  

(FOR IV – SEMESTER) 
UNIT – II 

 
SOIL WATER AND WATER FLOW 

 



 
 Soil water – various forms – Influence of clay minerals – Capillary rise-suction-Effective 
stress concepts in soil-total, neutral and effective stress distribution in soil –permeability  -
Darcy’s law- Permeability  measurement  in the laboratory – quick  sand condition – seepage – 
Laplace Equation – Introduction to flow nets – properties and uses – Application to simple 
problems. 
 

Two Marks Questions and Answers 
 

1. Define soil water. 
  Water present in the voids of a soil mass is called soil water. 
 
2. State the types of soil water. 
 

i. Free water (or) Gravitational water 
ii. Held water 

a. Structural water 
b. Absorbed water 
c. Capillary water. 

 
3. Define free water and held water. 
 
Free water: 
 Water that is free to move through a soil mass under the influence of gravity is known as 
free water. 
Held water: 
 Held water is the part of water held in soil pores by some forces existing within the pores: 
such water therefore is not free to move under gravitational forces. 
 
4. Define structural, Adsorbed and capillary water. 
Structural water: 
 Structural water is the water chemically combined in the crystal structure of the soil 
mineral and can be removed only by breaking the structure. 
Adsorbed water: 
 Adsorbed water, also termed as the hygroscopic water (or) the contact moisture (or) 
surface bound moisture.  It is the part which the soil particles freely adsorb from atmosphere by 
the physical forces of attraction and is hold by the force of adhesion. 
Capillary water: 
 Water held in the interstices of soil due to capillary forces is called capillary water. 
5. Draw the diagrammatic representation of water molecules. 
 
 The soil particles carry a net negative charge.  Due to this charge, they attract water.  The 
water in the soil system that is not under significant forces of attraction from the soil particle is 
pore water. 
 
6. Define capillary action (or) capillarity: 

It is the phenomenon of movement of water in the interstices of a soil due to capillary 



forces.  The capillary forces depend upon various factors depend upon various factors such as 
surface tension of  water, pressure in water in relation to atmospheric pressure and thee size and 
conformation of soil pores. 
 
7. Define contact moisture.  

Water can also be held by surface tension round the point of contact of two particles 
(spheres) capillary water in this form is known as contact moisture (or) contact capillary water. 
 
8. Compute the maximum capillary tension for a tube 0.05 mm in diameter. 
 
     Solution: 
 The maximum capillary height at 4o C is given by 
 

   
 
Capillary tension = (hc)max   = 0.617 x 9.81  
         = 6.05 x KN/m3 

 
9. Compute the height of capillary rise in a soil whose D10 is 0.1 mm and voids ratio is 0.60. 
   Solution: 
 
 Let the average size of the void be d mm. 
 
 Volume of each sphere of solids maybe assumed proportional to D10

3.  Since the voids 
ratio is 0.6, the volume of rods space, corresponding to the unit of volume of solids, will be 
proportional to 0.60 D10

3 .  But volume of each void space is also proportional to d3. 
 
 Hence d3 = 0.60 D10

3 

 

 

 

   
 

        = 0.845 x D10 

 

        = 0.845 x 0.1 
 
    d = 0.0845 mm = 0.00845 cm 
 

   at 4o C. 
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10. When water at 20o is added to a fine sand and to a silt, a difference in capillary rise of 
25 cm is observed between the two soils. If the capillary rise in fine sand is 25 cm, calculate 
the difference in the size of the voids of the two soils. 
  
Solution: 
 
 Using suffix 1 for sand 2 for silt, 
 
 hc1   = 25 cm 
 
 hc2   = 25+25 = 50 cm 
 

  
 

  
 
Difference in the size of the voids  
 
  d1 –d2 = 0.0119 - 0.00595  
 
     = 0.00595 cm 
 
 
 
 
11. The capillary rise in soil A with D10 = 0.06 mm is 60 cm.  Estimate the 
     Capillary rise in soil B with D10 = 0.1 mm, assuming the same voids ratio in 
       both the soils. 
 
     Solution: 
 
 Let the size of voids be d. 
 

 Now   
 

   
 

       (i) 
For soil A, 
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       = 5.14 x 10-2 mm 
Substitute it in (i), we get, 
 

   
 

Now for soil B  
 

   
 

   
   = 0.00857 cm 
12. Define Permeability. 
 Permeability is defined as the property of a porous material which permits the passage of 
water (or) other fluids through its interconnecting voids. 
 A material having continuous voids is called permeable.  Grovels are highly permeable 
while stiff clay is a least permeable, and hence clay may be formed impermeable. 
 
13. Define laminar and turbulent flow. 
 In laminar flow, each fluid particle travels along a definite path which never crosses the 
path of any other particle. 
 In Turbulent flow, the paths are irregular and twisting, crossing and recrossing at random. 
 
 
 
14. What are the importances for the study of seepage of water? 
 

1. Determination of rate of settlement of a saturated compressible soil layer. 
2. Calculation of seepage through the body of earth dams, and stability of slopes. 
3. Calculation of uplift pressure under hydraulic structure and there safety against 

piping. 
4. Ground water flow towards well and drainage of soil 

 
15. Define Darcy’s law. 
 Darcy’s law states that for laminar flow conditions in a saturated soil, the rate of flow or 

the discharge per unit time is proportional to the hydraulic gradient. 
 q = KiA 
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Where  
 q = discharge per unit time 
 A = Total cross-sectional area of soil mass, perpendicular to the direction of         
flow 
 i = hydraulic gradient 
 k = Darcy’s Coefficient of permeability 
 v = Velocity of flow, or average discharge velocity. 
 
 If a soil sample of length L and cross-sectional area A, is subjected to differential head of 

water, h1-h2 the hydraulic gradient i will be equal to  and  

  When hydraulic gradient is unity, K is equal to v. 
 
If a soil sample of Length L and cross-sectional area A, is subjected to differential head of water, 

h1 –h2, the hydraulic gradient I will be equal to  and   
 
 
16. Define coefficient of permeability (or) permeability. 
 It is defined as the average velocity of flow that will occur through the total cross-
sectional are of soil under unit hydraulic gradient.  The coefficient of permeability is denoted as 
K.  It is usually expressed as cm/sec (or) m/day (or) feet/day. 
 
 
17. Define seepage velocity (or) Actual velocity. 
 The actual velocity (or) seepage velocity is defined as the rate of discharge of percolating 
water per unit cross-sectional area of voids perpendicular to the direction of flow. 
 
18. State the factors affecting permeability. 

i. Grain size 
ii. Properties of the pore fluid 
iii. Voids ratio of the soil 
iv. Structural arrangement of the soil particle 
v. Entrapped air and foreign-matter. 
vi. Adsorbed water in clayey soils. 

 
19. Mention the methods to determine the coefficient of  permeability. 
 a. Laboratory methods  

i. Constant head permeability test   
ii. Falling head permeability test 

b. Field methods 
i. Pumping – out tests 
ii. Pumping –in tests 

c. Indirect methods 
i. Computation from grain size (or) specific surface 
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ii. Horizontal capillarity test 
iii. Consolidation test dates. 

 
20. Define capillary siphoning. 
 When the water level in the reservoir is corresponding to the flood level (H.F.L), the 
portion to the u/s of the dam will be saturated.  The water level in the u/s pervious shell will be 
practically the same as the H.F>L.  Due to capillarity, water will rise through a height hc.  If the 
top of the core is situated at a height y< hc above the  H.F.L, , the capillary forces ill pull the 
water in descending part of the earth dam, and will slowly empty it.  This process is known as 
capillary siphoning. 
 
21. Define surface tension. 
 Surface tension of water is the property which exists in the surface film of water tending 
to contract the contained volume into a form having a minimum superficial area possible. 
 The surface tension (Ts) or coefficient of surface tension is approx equal to 72.8 dynes 
per cm (or) 0.728 x 10-6 KN/cm at 20oC. 
 The surface tension of water is more than double the surface tension for other common 
liquids.  The surface tension for mercury is as high 2.45 x 10-6 KN/cm.  The formation of curved 
meniscus around the other material inserted in water is due to the surface tension. 
 
22. Explain the formation of meniscus:  
 When a solid or hollow tube, wet with water is partly inserted vertically in water, the 
molecules, due to attraction between the molecules of water and the material, climb the solid 
surface forming a curved meniscus adjacent to the walls of the tube or rod. 
 
 
 
 
 

16 Marks Questions and Answers 
 

1. Explain capillary rise? 
 
  The rise of water in the capillary tubes, or the fine pores of the soil, is due to the 
existence of surface tension which pulls the water up against the gravitational force. The height 
of capillary rise, above the ground water (or free water) surface depends upon the diameter of the 
capillary tube (or) fineness of the pores and the value of the surface tension.  Fig.3 shows an 
enlarged view of a capillary tube inserted in water and the consequence capillary rise. 
 
  
 
 The formation of a concave meniscus will take place only if the inner walls of the tube 
are initially wet.  If the walls are dry before insection, a convex meniscus depressed bellow the 
water is formed.  The vertical components Ts Cos  of the surface tension force depends upon 
the angle of incidence d between the meniscus and the tube. 
 
 Let   d  =  inner diameter of the tube 



  hc  = height of capillary rise 
 
 When the capillary tube is inserted in water, the rise of water will take place.  When 
equilibrium has reached, water will stop moving further. If this equilibrium position, when the 
height of rise is hc, the weight of column of water is equal to  
 

. 
The vertical component of the reaction of meniscus against the inside circumference of the tube, 
supporting the above weight of water column is equal to  
 

 

Equating these two quantities at the equilibrium.  

    
 
 The value of  will depend upon the initial conditions of the inner walls of the tube.  If 
the tube is perfectly clean and wet, a semi-spherical meniscus will be formed.  In that case,  
will be zero, and maximum capillary rise will take place: 
For water at 4o C 
 
For water at 4o C 
 

  

  
 
If d is expressed in cm, the above expression reduces to  
 

   (i) 
 
At 20 o C,  
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   (ii) 
From equation (i) (ii), the height of capillary rise decreases with increase in temperature. 
 
2. Explain capillary tension, capillary potential and soil suction. 
 
 At any height h above the water table, the stress is in water will be -h  (minus sign for 
tension).  The maximum magnitude of the stress u will depend upon the radius R of the meniscus 
(shown in fig.4) the relation between the diameter d and the radius R is. 
 

  
 
  
 
Substitute value in  
 

  
 

  
 

  
 

   = maximum tension at the level of meniscus 
 

  
 
 Thus the maximum tensile stress is inversely proportional to the radius of meniscus.  
When  = 0, R = d/2, we have  
 

  
 The tensile stress, caused in water is called the capillary tension (or) the capillary 
potential.  The capillary tension (or) capillary potential is the pressure deficiency, pressure 
reduction (or) negative pressure in the pore water by which water is retained in a soil mass.  It 
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decreases linearly from a maximum value of   at the level of the meniscus to zero value at 
the free water surface.  The pressure deficiency in the held water is also termed as soil suction 
(or) suction pressure. 
 
Capillary pressure: 
 
 The capillary pressure distribution is rectangular unlike the triangular distribution of 
capillary tension.  The magnitude of the pressure is the same at all heights above the free water 
surface. 
 
 The capillary pressure, transferred from grain to grain may be also called intergranular 
(or) contact (or) effective pressure. 
 
 
3. Define Non-uniform meniscus and explain stress condition in soil. 
 
 If the meniscus is not of uniform curvature, but R1 and R2 are the radii of curvature in 
two orthogonal planes, the height of capillary rise is given by 
  

  
 
Stress conditions in soil: 
 
 Effective and Neutral pressures 
  The total stress (or) unit pressure ( ) is the total load per unit area.  This pressure 
may; be due to  
 

i. Self –weight of soil (saturated weight, if the sol is saturated) 
ii. Over –burden  on the soil 

 
1 The total pressure consist of two distinct components: 

 
i. Intergranular pressure (or) effective pressure 
ii. Neutral pressure (or) pore pressure 

 
 Effective pressure (1) is the pressure transmitted from particle through this point of 
contact through the soil mass above the plane. 
 
 The neutral pressure (u) (or) the pore pressure (or) the pore water pressure is the 
pressured transmitted through the pore fluid. 
 
 Since the total vertical pressure at any plane is equal to the sum of the effective pressure 
and the pore pressure. 
 

ch

cmhc 36
00857.0

3084.0




  
 At any plane, the pore pressure is equal to piezometric head h  times the unit weight of 
water, (i.e) 
 

  
To find the value of effective pressure, different conditions of soil water system is considered. 
 

1. Submerged soil mass 
2. Soil mass with surcharge 
3. Saturated soil with capillary fringe 
 

1. Submerged soil mass: 
 Fig.5 shows a saturated soil mass of depth Z, submerged under water of height Z1 above 
its top level.  If a piezometric tube is inserted level AA1, water will rise in it upto level cc. 
 
Now, total pressure at AA is given by 
 

  
 

Also, pore pressure   
 

   
 
 

        
 

        
 
 

         
 
   

   
 
 Hence the effective pressure is equal to the thickness of the soil multiplied y the 
submerged weight of soil.  It does not depend upon the height Z1, of the water column.  Even if 

Z1 reduces to zero,  will remain equal to Z1 so long as the soil mass above AA remains fully 
saturated.  At BB, the total pressure is equal to the water pressure Z1 and hence the effective 
pressure is zero. 
 
2 Soil mass with surcharge: 
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 Let us now consider a moist soil mass of height Z1 above a saturated mass of height Z.  
Soil mass supports a surcharge pressure of intensity ‘q’ per unit are. 
 
 At the level AA, the pressure is: 
  

   
 

  
 

         
 

    

  
 
At the plane BB 
 

  
 

  
 

  
 

  
 

  
 
At the plane CC, effective pressure = total pressure = q 
 
3. Saturated soil with capillary fringe. 
 

 Fig.7 shows a saturated soil mass  of height z.  Above this, there is a soil mass of 
height, Z1 saturated by capillary water. 
 
 If we insert a piezometric tube at AA, water will rise to a height corresponding to the free 
water level BB. 
 
 The capillary pressure (or) compressive pressure on the soil grains.  This pressure is also 
inter-granulate and is effective in reducing the rods ratio of the soil mass.  This compressive 

pressure is equal to  in this case. 
 
Hence at level AA, 
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        
 

      

  
 

  
 

  
 
Similarly at the level BB, 
 
  

  
      

      

        

  
 
Finally at CC, 
 
 1 = Capillary pressure = Z1 
 
 The effective pressure distribution diagram is shown in fig. 
 
At any depth x below the level CC 
  

  
 u = - [Pressure due to weight of water hanging below that level] 
  

  
 

  
 

  
 

  

satsat ZZ  1

u 1 Zu  hu 

hu 

 ZZZ satsat  1

   satsat ZZ1

1
1

1  ZZ sat 

satZZ  1
1

1
1 

 1
1   Z   sat

1

  1
sat

satZ  1
1 

satx  .

 xZ  1

   xZxu sat  1
1

   1Zx sat 

 1
11 Zx 



 
4. The water table in a certain area is at a depth of 4m below the ground surface.   To a 
depth of 12m, the soil consists of every fine sand having an average voids ratio of 0.7.  
Above the water table  the sand has an average degree of saturation of 50%.  
Calculate the effective pressure on a horizontal plane at a depth 10 meters hollow the 
ground surface.  What will be the increase in the effective pressure if the soil gets saturated 
by capillarity up to a height of 1m above the water table?  Assume G = 2.65 
 
Solution: 
 
 Height of sand layer above water table   = Z1 = 4 m 
 
 Height of saturated layer above water table    = 12 - 4 = 8 m 
 
 Depth of point X, where pressure is to be computed = 10 m 
 
 Height of saturated layer above X = Z2 = 10 - 4 = 6 m 
 
 Now  
 

   
i. For sand above water table:- 
 

   
 

   
 

   
ii. For saturated sand below water table 
   

   
 

   
 

   
 

   
 

   

3/29.15
7.01

81.965.2

1
mKN

e

G
d 












Sr

G
e




132.0
65.2

5.07.0





G

eSr

  3
1 /31.17132.129.151 mKNd  

264.0
65.2

7.0


G

e
sat

 satd   12

 264.0129.15 

3
2 /33.19 mKN

31
2 /52.981.933.19 mKN



Effective pressure at X 
 

   
 

   
 
     = 185.22 KN/m2 

 

 
 

 
 
Effective stress at x after capillary rise 
 

  
 

         
 
         = 128.38 KN/m2 
Increase in pressure 
   = 128.38 - 126.36 = 2.02 KN/m2 
Result: 

i. Effective pressure at a depth of 10m = 128.38  KN/m2 
 
ii. Increase in pressure = 2.02 KN/m2 

 
5. A 10m thick bed of sand is underlain by a layer of clay of 6 m thickness.  The  water 
table witch was originally at the ground surface is lowered by drainage to a depth of 4m , 
where upon the degree of saturation above the lowered water table reduces to 20%.  
Determine the increase in the magnitude of the vertical effective pressure at the middle of 
the day layer due to lowering of water table, the saturated unit weights of sand and clay are 
respectively 20.6 KN/m3 and 17.6 KN/m3 and the dry unit weight of sand is 16.7 KN/m3. 
 
Solution: 
  

i) Before lowering the water table, the pressures at the middle of the clay layer are 

   
 
       = 258.8 KN/m2 

 
  u = 13 x 9.81 = 127.53 KN/m2 
   
  1 =  - u 
        = 258.8 - 127.53 = 131.27 KN/m2 

2211  ZZ 

33.19631.174 

2/86.5881.96 mKNhu  

21 /36.12686.5822.185 mKNu 

   ch
1

21
1 163

     81.9152.9731.173 

   6.1736.2010 



 

 

 
  ii) After lowering the water table, the unit weight of sand is given by  

  
 

  
      = 16.7+0.2 (20.6-16.7) 
      = 17.48 KN/m3 
 

          
 
 = 246.32 KN/m2 
 
  u = 9 x 9.81 = 88.29 KN/m2 
 
1 = 246.32   - 88.29 = 158.03 KN/m2 

 
  Increase in effective pressure 
 
   = 158.03 - 131.27 
   = 26.76 KN/m2 
 
6. The water table in a deposit of sand 8 m thick is at a depth of 3m below the surface. 
Above the water table, the sand is saturated with capillary water.  The bulk density of sand 
is 19.62 KN/m3.  Calculate the effective pressure of 1m, 3m and 8m below the surface.  
Hence plot the variation of total pressure, neutral pressure and effective pressure over the 
depth of 8 m. 
 
Solve: 
 
a.  Stresses at D, & 8 m below ground: 
 
 If we insert a piezometric tube at D, water will rise through a height h = 5m in it. 
 
  = (3+5) sat 
     = 8 x 19.62 
  = 156.96 KN/m2 
 
  u = h  
 
     = 5 x 9.81 = 49.05 KN/m2 
 

  
 
b. Stresses at C, 3m below ground level: 
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  u = 0 

  
 

  
 
c Stress at A, at ground level 
 
   = 0 
 

  
 

  
 
   
d. Stresses at B, 1m below ground level 
  = 1sat = 1 x 19.62 = 19.62 KN/m2 
 u = -2 = -2 x 9.81 = -19.62 KN/m2 
 
 (i.e.)  Pressure due to weight of water hanging below that level 
 
 

  
           = 19.62 + 19.62  
     1 = 39.34 KN/m2 

 

 The total stress, effective stress and pore pressure distribution are shown in fig. 
 
7. Describe Poiseuille’s Law of flow through capillary tube. 
 
Solution: 
  
 The relationship governing the laminar flow of water through capillary tube is known as 
Poiseuiller’s law.  The fig.8.a. Shows a capillary tube, of length L and radius R.  Velocity 

distribution is shown in fig.8.b.  At any radial distance from the centre, the velocity is V and the 
velocity gradient (i.e.) 

 Space rate of change of velocity .  The unit shear at the top and bottom of the cylinder of 
water of radius r is given by 
 
 

      (1) 
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Where  is the co-efficient of viscosity 
 
 
 If the tube is subjected to a head of water h1 at one end, and h2 (h1>h2) of the other end, 
flow will take place and various forces acting on the cylinder of water at any radius r.  Since the 
tube is in equilibrium, the sum of all forces acting on the cylinder must be zero.  Hence 
 

  
 

  
 

  
 
Replacing h1-h2 by h (net head causing flow) and integrating, 
 

  
 

At r = R, v = 0    
 Hence  
 
 

        (2) 
 This is the law of variation of velocity. 
 
 The quantity of water flowing in the thin cylindrical sheet dr thick, is given by 
 

   
 Total quantity of water flowing in the capillary tube, per unit time is     
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Replacing  hydraulic gradient 
 

     (3) 
 
 If a is the area of the tube, average velocity is given by  
  

      (4) 
 
 It is the Poiseuille’s laws in which the velocity of flow during laminar flow varies as the 

first power of the hydraulic gradient. 
 
Effect of shape of the capillary tube: 
 
 The above equations are valid for circular capillary tube only.  The velocity is generally 
designated in terms of the hydraulic radius RH, which is defined as the ratio of area to the wetted 
perimeter. 
 

For circular tube 
 

  
 
 R = 2RH 
 

     (5) 
 
For closely spaced parallel plates 
 

    (6) 
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    (7) 
 
Where Cs = shape constant 
 

For irregular capillary voids 
 
 a = area of flow passage 
 
    = nA 
 

  
 

    (8) 
 
Hydraulic mean radius in soil pores: 
 
 If Vs is the volume of solids in a soil mass having voids ratio e, the volume of the flow 
channel (=AL) will be eVs.  The total surface area of flow channel (=PL) is equal to the total 
surface area AS of the soil grains. 
  

  
 
Let Ds = diameter of the spherical grain 
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Where, C is a new shape constant. 
 
8. Calculate the co-efficient of permeability of a soil sample, 6 cm in height and 50 cm2 in 
cross-sectional area, if a quantity of water equal to 430 ml passed down in 10 min. Under 
an effective constant head of 40 cm. 

 
On oven-drying, the test specimen has mass of 498 g.  Taking the specific gravity of soil 
solids as 2.65, calculate the seepage velocity of water during the test. 
 
Solution: 
 Given, 
 
 Q = 430 ml ; t = 10 x 60 = 600 seconds 
 A = 50 cm2 : L = 6 cm ; h = 40 cm 
 
From the equation for constant head permeability test 
 
 
  
 
 
 

  
 
 K = 2.15 x 10-3 cm/sec 
    = 2.15 x 10-3 x 864 = 1.86 m/day 

(Since 1cm/sec=864 m/day) 
Now 
 

  
 

 Now      
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9. In a falling head permeameter test, the initial head (t = 0) is 40 cm.  The head drops by 5 
cm in 10 minutes.  Calculate the time required to run the test for the final head to be at 
20cm.  If the sample is 6 cm is height and 50 cm2 in cross-sectional area, calculate the 
coefficient of permeability, taking area of stand pipe = 0.5 cm2 
 
Solution: 
      In a time interval t = 10 minutes, the head drops from initial value of  
     h1 = 40 to h2 = 40 – 5 = 35 cm 
 From the equation for falling head permeameter 
 

  
 

  
 

Where  Constant for the set up 
 

 10 = m  
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 Now, let the time interval required for the head to drop from initial value of h140cm to a 
final value of h2 = 20cm, be t minutes. 
 

  
 

 Again  
 

   
  
 (Since t used to compute m was in minutes)  
 

  
 

  
10) a) What is seepage force or seepage pressure?  
 

By virtue of the viscous friction exerted or water flowing through soil pores, or energy 
transfer is effected between the water and soil.  The force corresponding to this energy transfer is 
called the seepage force or seepage pressure. 
 

Seepage pressure  
 

                =  
    = i.z. 
 
 Z - Thickness of soil mass 
 i - Hydraulic gradient 
 
Seepage force   J  =  Ps. A 

To total cross-sectional force =  
 

 Seepage force per unit volume  
       = i   
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10) b) What is upward flow or Quick condition?  Explain in brief? 
 

 When flow takes place in an upward direction.  The seepage pressure also acts in the 
upward direction and the effective pressure reduced.  If the seepage pressure becomes equal to 
the pressure due to submerged weight of the soil, the effective pressure is reduced to zero.  In 
such a case, a cohesonless soil loses all its shear strength, and the soil particles have a tendency 
to move up in the direction of flow.  This phenomenon of lifting of soil particles have a tendency 
to move up on the direction of flow.  This phenomenon of lifting of soil particles is called quick 
condition, boiling condition or quick sand. 
 
 The tuning the quick condition, 
 

  
 

  
 
From which 
 

  
 The hydraulic gradient at such a critical state is called the critical hydraulic gradient. 

For loose deposits of sand or silt, if roids ratio e is taken as 0.67 and G as  2.67, the 
critical hydraulic gradient works out to be unity.  
 
 It should be noted that quick sand is not a type of sand but a flow condition occurring 
within acohesionless soil when its effective pressure is reduced to zero due to upward flow of 
water. 
 
 Figure.9. shows a set-up to demonstrate the phenomenon of quick sand.  Water flows in 
an upward direction through a saturated soil sample of thickness z under a hydraulic head h. 
 
 This head can be increased or decreased by moving the supply tank in the upward or 
decreased by moving the supply tank in the  upward or downward direction.  When the soil 
particles are in the state of critical equilibrium, the total upward force of the bottom of the soil 
becomes equal to the total weight of all the materials above the surface considered. 
 
 Equating the upward and downward forces at the level a –a, we have   
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           =  z1 
 
11.Explain the Laplace equation for two dimensional flow. 
 
Assumption 

1. The saturated porous medium is compressible.  The size of the pore space doesn’t 

change with time, regardless of water pressure. 
 
2. The seeping water flows under a hydraulic gradient which is due only to gravity head 

loss, or Darcy’s law for flow through porous medium is valid. 
 

3. There is no change in the degree of saturation in the zone of soil through which water 
seeps and quantity of water flowing into any element of volume is equal to the 
quantity which flows out in the same length of time. 

 
4. The hydraulic boundry conditions of any entry and exit are  known  

 
5. Water is incompressible. 

 
 Consider an element of soil of size x, y and of unit thickness perpendicular to the 
plane of the paper   Let Vx and Vy be the entry velocity components in X and Y directions. 
 

 Then  and  will be the corresponding 
velocity components of the exit of the element. 
 
 According to assumption 3 stated above.  The quantity of water entering the element is 
equal to quantity of water leaving it. 
 
   
 

  
 
From which  
 

  
 
This is the continuity equation according to assumption 
 

   And  
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Where, 
 
 h = hydraulic head under which water flows. 
 
 Vx & Vy = Co-efficient of permeability in x and y directions. 
 
Substituting these 
 

  
For an isotropic soil, 
  
     

 
 

Substituting  = kh = Velocity potential, 
 

 We get  
 
 This is the Laplace equation of flow in the dimensions. 
 
Velocity potential () 
 
 The velocity potential  may be defined as a scalar function of space and time such that 
its derivative with respect to any direction gives the fluid velocity in that direction.  This is 
evident, since, we have  =kh 
 
  

   
 
Similarly, 
 

  
The solution of equation 
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Can be obtained by  
 

i. Analytical methods 
ii. Graphical method 
iii. Experimental methods 

 
 The solution gives two sets of curves known as ‘equipotential lines’ and ‘stream lines’ (or 

flow lines), mutually orthogonal to each other, as shown in figure.10. 
 

The equipotential lines represent contours of equal head (potential).  The direction of seepage is 
always perpendicular to the equipotential lines.  The path along which the individual particles of 
water seep through the soil are called stream lies or flow lines. 
 
12. a)  Explain properties of flow nets. 
 

1. The flow lines and equpotential lines meet at right angles to one another. 
2. The fields are approximately squares, so that a circle can be drawn touching all the 

four sides of the square. 
3. The quantity of water flowing through each flow channel is the same, similarly, the 

same potential. 
4. Smaller the dimensions of the field, greater will be the hydraulic gradient and velocity 

of flow through it. 
5. In a homogeneous soil, every transition in the shape of the curves is smooth, being 

either elliptical or parabolic in shape. 
 
12. b)  Explain flow net By Electrical analogy 
 
 The Darcy’s law governing the flow of water through soil is analogous to ohms law 

governing the flow of electric current through conductors. 
 
 Thus, the solutions to seepage problems can be obtained with electric models which have 
the same geometric shape as the soil through which the water flows. 
  
 The seepage medium is replaced by an electric conductor consisting of water with some 
salt or dilute hydrochloric acid.  The boundary equipotential lines are mode of copper. 
 
 The boundary low lines are simulated by non conducting strips such as ebonite or 
Perspex etc.    A alternating voltage (generally of value 5 to 20 volts.) is applied across the 
boundry equipotential strips. 
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 A potential divider is connected in parallel with alternating current source. 
 From figure11., the electric analogy way, the model and the completer circuit diagram, 
for study of seepage through an earth dam. 
 
 
 
 To determine a line of contour of equal potential, the potentiometer is adjusted to a 
percentage of the total voltage drop, and the probe of a galvanometer is used to find the 
corresponding balance pints (Null points) or the model. 
 
 Changes in the co-efficient of permeability in soil zones in the seepage analogue are 
simulated by changes in the electric conductivity co-efficient in the model. 
 
 When once the equipotential lines are obtained, orthogonal flow lines confirming to the 
boundry conditions are then drawn as in the graphical method. 
 
 From figure, it shows a typical flow net for steady seepage case for an earth dam waving 
the same foundation material as that of the body of the dam. 
 
13. Applications of flow net:  Explain in brief 
 

i. Determination of seepage 
ii. Determination of hydrostatic pressure 
iii. Determination of seepage pressure 
iv. Determination of exit gradient 

 
i.Determination of seepage 

 
 The portion between any two successive flow lines is at flow channel.  The portion 
enclosed two successive equipotential lines and successive flow lines are known as field. 
 Let b and l be the width and length of the field. 
 
  h = head drop through the field 
 
  q = discharge passing through the flow channel 
 H = Total hydraulic head causing flow = difference between upstream and 
downstream weeds. 
 
 

ii.Determination of hydrostatic pressure. 
 

 The hydrostatic pressure at any point within the soil mass is given by  
 

   
Where, u = hydrostatic pressure 
 h = Piezometric head. 

hu 



 
 The hydrostatic pressure in terms of piezometric head h is calculated from the following 
relation. 
 
  

  
Where, 
 
 h – Hydraulic potential at the point under consideration 
 
 Z – Position weed of the point above datum, considered positive upwards. 
 
 Then, from Darcy’s law of flow through soils. 
 

   
x/d = Total x/0 potential drops in the completer flow net, 
 

  
 
Hence,  

  
 The total discharge through the complete flow net is given by 

  
 

  
x/f = Total number of flow channels in the net. 
 
Where, 
 The field is square, hence b = l 
 

Thus,  
 This is the required expression for discharge passing through a flow net and is valid for 

isotropic soils in which  
 
iii.Determination of seepage pressure 
 
 The hydraulic potential h at any point located after N potential drops, each of value h is 
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given by 
 

  
 
 The seepage pressure of any point the hydraulic potential or the balance hydraulic head 
multiplied by the unit weight of water,  
  

  
 
 The pressure acts in the direction flow 
 
iv.Determination of exit gradient. 
 The exit gradient is the hydraulic gradient of the downstream end of the flow line where 
the percolating water leaves the soil mass and emerges into free water at the downstream. 
 
 The exit gradient can be calculated from the following expression, in which h 
represents the potential drop and l the average length of last field in the flow net alt the exit end. 
 

   
 
 
 
 
 
 
 
 
 
 
 

and OC clays- Problems on final and time rate of consolidation. 
 

Two mark questions 
1. What are the assumption are made in the Boussinque equations. 
  

1 The soil mass is homogenous, that is all its constituent parts (or) elements are 
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UNIT – III 

STRESS DISTRIBUTION 
 

Stress distribution in soil media – Boussinque formula- Stress due to line load and circular and 
rectangular  area – Approximate methods – Use of influence charts – Westergaard equation for 
point load – Components of settlement – Terzaghi’s one dimensional consolidation theory- 
Governing differential equation – Laboratory consolidation test – Field consolidation curve – NC 



similar and it has identical properties at every point in it in identical directions. 
2 Te soil mass is an elastic medium for which the modulus of elasticity E is 

constant. 
3 The soil mass is “Isotropic” that is it has identical elastic properties in all 

directions through any point of it. 
4 The soil mass is semi infinite that is, it extends infinitely in all directions below a 

level surface. 
 
 2.What are the Symbol to be Used For Stress Distribution? 
 The total stress field at point within a soil mass loaded at its boundary consists of nine 
stress components given below. 
 

    
 
 These, nine stress components as given by this group of square matrix of stress are the 
components of a mathematical entry called the stress tensor of a symmetrical matrix relative to 
its main diagonal (upper left (or) lower right.  The main diagonal elements of the stress tensor are 
the normal stress components and the off diagonal elements are shear stress out of the nine stress 
components indicated above, there are three independent shear components making the total 
unknowns to be equal to six.  The corresponding nine strain components are given by the 
following strain tensor. 

    Where and denotes the linear or direct strain  
 and  denotes the shearing strain . 
3. Write about the Pressure Distribution Diagrams Types. 
 By means of Boussinesq’s stress distribution theory, the following vertical pressure 

distribution diagrams can be prepared. 
1. Stress isobar  (or)  isobar diagram 
2. Vertical pressure distribution on a horizontal plane 
3. Vertical pressure distribution on a vertical line. 

4. What Is Iso-Bar? 
 An Isobar is a curve or counter connecting all points below the ground surface of equal 
vertical pressure on a given horizontal plane is the some in all directions at points located at 
equal radial distances around the axis of loading 
5. Define the pressure bulb. 
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 The some in a loaded soil mass bounded by on isobar of given vertical pressure.  intensity 
is called a “pressure bulb”. 
6. Define Contact Pressure? 
 Contact pressure defined as the vertical pressure acting at the the surface of contact 
between the base of footing and the underlying soil mass. 
7. What Is Compressibility? 
 When the compressive load is applied to soil mass, a decrease in its volume takes places. 
The decrease in the volume of soil mass under stress is known as compression and the property 
of soil mass compressibility. 
8. What is consolidation? 
 Every process involving a decrease in the water content of a saturated soil without 
replacement of the water by air is called process of consolidation. 
9. Define the Co-efficient of Compressibility.(av) 
 The co-efficient of compressibility is defined as the decrease in voids per unit increase of 
pressure. 

    
10. Define of volume change (mv)  
 The co-efficient of volume change or the co-efficient of volume compressibility is 
defined as the change in volume of a soil mass per unit of initial volume due to a given increase 
in the pressure. 
 
 
11. Write short notes on consolidation of undisturbed specimen? 
 Soil deposits may be divided into three classes as regards to the consolidation history; pre 
consolidation normally consolidated and under consolidated.  Clay is said to be pre compressed 
pre consolidated or over consolidated.  
  If it  has ever been subjected to a pressure in excess of it present overburden pressure the 
temporary overburden pressure to which a soil has been subjected and under which it got 
consolidated is known as pre-consolidation pressure.   
 A soil may have been subjected during metal away by other geologic over burden and 
structural level which to longer exist now.  A soil which is not fully consolidated existing over 
burden called an under consolidation. 
 
12. How do you determine the pre-consolidation pressure? 
 To find the pre consolidation pressure on disturbed sample of clay is consolidated in the 
laboratory and the pressure voids ratio relationship is plotted on a semi-log plot. 
 
 The initial portion of the curve is that and assembles the recompression curve of a 
remolded specimen.  The lower portion of the curve which is a straight line is the laboratory 
virgin curve.  

  The approximate value of the pre-consolidation pressure  may be determined by 
the following empirical method of A casagrande.  The point A of maximum curvature selected 
and horizontal line AB: is drawn. A tangent AC is drawn to the curve and bisector AD, bisecting 
angle BAC is drawn.. The straight portion of the virgin curve is extended back to meet the 
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bisector AD in P.  The point P corresponds to the pre consolidation pressure . 
 
13. What are the assumption are made in the Terzaghi’s theory of one-dimensional 
consolidation. 

1 soil homogenous and fully saturated 
2 Soil particles and water are incompressible. 
3 Deformation of the soil is due entirely to change in volume 
4 Darcy’s law for the velocity of flow of water thorough soil is perfectly valid. 
5 Coefficient of permeability is constant during consolidation 
6 Load is applied deformation occurs only in direction  
7 The change in thickness of the layer during consolidation is insignificant. 

 
16 MARKS QUESTIONS AND ANSWERS. 

 
1. Explain the Stresses Due To Self Weight  of soil. 
 We shall consider the stresses within a soil mass due to its own weight stresses due o self 
weight are some times known as geostatic stresses.  Let us take the soil mass to be bounded by 
the horizontal plane (ground surface) xy and the Z-axis be directed down wards.   Under this 
condition, the soil mass is said to be semi-infinite  where there is no external loading, the ground 
plane becomes or principal plane since it is devoid of  ay shear loading.  From the symmetry and 
the orthogonally plane since it is devoid of any shear loading.  From the symmetry and the 
orthogonally of principal planes, are can conclude that all the horizontal and vertical planes will 

be devoid of shear stress, so that within soil mass.  .  Substituting this in 

the equilibrium equations, we get            3.1 
Where; 
   = unit weight of soil and  
  z= vertical stress at a point within and soil mass, situated at a depth ‘Z’   
 below the ground surface. 
Similarly, from compatibility equations in terms of stresses ( for a  three dimensional case.)  

 One obtains,         3.2 
 
     Poisson’s ratio. 

   = Coefficient of lateral pressure at rest. 
 Thus, equation 3.1 and 3.2 give stress components at a point situated at depth Z below the 
ground surface, due to self weight of the soil mass above it. 
 At a certain point within the soil mass, the stresses components due to both these loading. 
(i.e self weight and surface loadings) can be found separately and then added algebraically to get 
then final stresses at the points.  In the following articles, we shall therefore discuss the stress 
distribution due to surface loading alone. 
 
2. Explain The Concentrated Force By Boussinesq Equations: 
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 Boussinesq (1885) solved the problem of stress distribution in soils due to concentrated 
load acting at the ground surface by assuming a suitable stress function.  The following 
assumptions are made in the solutions by the theory of elasticity. 
 

1. The soil mass is homogenous, that is all its constituent parts (or) elements are 
similar and it has identical properties at every point in it in identical directions. 

2. Te soil mass is an elastic medium for which the modulus of elasticity  E is 
constant. 

3. The soil mass is “Isotropic” that is it has identical elastic properties in all 
directions through any point of it. 

4. The soil mass is semi infinite that is, it extends infinitely in all directions below a 
level surface 

Let a point load QL (single concentrated vertical load) act a t the ground surface at a 
point.  ‘O’ which may be taken as the origin of the x, y and Z axes as shown.  Let us find 

the stress components at a point P in the soil mass, having coordinates x, y and Z or 
having a radial horizontal distance ‘r’ and vertical distance ‘Z’ form the point O. 
 
Using the logarithmic stress function Boussinesq showed that the polar radial stresses 
may be expressed as. 

     3.1   
 where R = Polar radial coordinate of point 

  and  

 In the cylindrical co ordinates the corresponding vertical stress  and tangential stress 

 are given by, 

    3.2 

   3.2 
And  

   

   3..3a  
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  3.3    
It should be emphasized that although both the vertical normal stress and shearing stress are 
independent of the elastic constants (E and ) they are very much dependent on the assumptions 
of linear elasticity. 
 Equation 3.2 may be written as 

   3.4  

  Boussinesaq influence factor 

    3.5 
 The insenties of vertical pressure indirectly below the point load (where r = 0) on its axis 
of loading given by  

     3.6  
 Further the horizontal radial stress component r and the displacement u, v and  in x, y 
and Z. directions are given by the following expressions. 
 

   3.7 
 

   3.8 

   3.9 
 
and 
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   3.10 
 
3. Write Notes on Iso-Bars: 
 An Isobar is a curve or counter connecting all points below the ground surface of equal 
vertical pressure on a given horizontal plane is the some in all directions at points located at 
equal radial distances around the axis of loading.  The some in a loaded soil mass bounded by on 
isobar of given vertical pressure. intensity is called a “pressure bulb” the vertical pressure at 

every point on the surface of pressure bulb is the same. 

 Suppose on isobar of value   (or) (25% of Q)   per unit area is to be 
plotted.  Then 
From Equation 3.4 

  
A number of numerical values of ‘Z’ are selected and the values of KB are calculated from (i).  
Corresponding to these values of KB, r/Z are found from table 3.1 and hence corresponding 
values r is computed.  Thus, we get the coordinates (r1Z) of a number of points where 

  the calculations are better performed in a tabular form shown below. 
 On any horizontal plane at a depth of Z, Z is the same for the same horizontal distance r 
on either side of axis of loading this makes the isobar symmetrical about the axis of loading.  The 

depth at which the isobar  crosses the axis of loading is calculated by first finding.  
KB: when r = 0 thus, 
 
 When r = 0, KB = 0.4775 

  Units. 
 
 For any given load system a number of isobars corresponding to various intensities of 
vertical pressure is drawn.  Thus, an “Isobar diagram”  in fig, consists of a family of isobars of 

various intensities. 
 
4. Explain Vertical Pressure Distribution On A Horizontal Plane: 
 The vertical pressure distribution on any horizontal plane at depth ‘z’ below the ground 

surface due to a concentrated load is given by  

  
 Depth Z is known depth selecting different values of horizontal distance r, KB can be 
found from table 3.1 and hence z can be computed.  Below the load the vertical pressure will be 
equal to 0.4775 Q/Z2 and it decreases very rapidly with the increases in the value of r as is 
evident from table 3.3 
 
 

   







 





RR

z

E

Q
W





 12

2

1
3

3

Qz .25.0

2
22

25.0
25.0

Z
Q

QZ

Q

z
KB z 





.25.0 Qz 

Qz 25.0

38.1
25.0

4773.0


2Z

Q
KBz 



 
 From the above table it can be concluded that at a given depth, when horizontal radial 
distance is equal to twice the depth the vertical pressure due to single concentrated load can be 
considered negligible. 
 
 
 
 
 Fig shows a vertical stress distribution diagram due to a concentrated load at a depth Z.  
If such a diagram is plotted for unit load ( Q = 1 ) is called the “influence” diagram for point A 

below the axis.  Such a diagram is helpful incomputing the vertical stress z  at A due to a 
number of concentrated loads Q1, Q2 ….  Qn etc.  Situated at radial distances r1, r2 …. rn from the 
vertical axis through point A.  The vertical stress is then given by  
 

  
 

   3.11 
 
Where o, 01, 02…………………on are the ordinates of the influence diagram  plotted for Z at 
A. 
 Te influence diagram can be used to find Z at any point on a horizontal plane, by or 
lending the diagram on the plane in such a way that vertical axis through that point coincides 
with the maximum ordinate (O) of the influence diagram when once this is done the ordinates 
01, 02,   …. on due to any given system of loads can be found and z can be computed form 
equation 3.11 
 
5. Explain The Vertical Pressure Distribution On Vertical Line: 
 
 From Equation 3.4, It is clear that z also decreases with increase in the depth Z on any 
vertical line distant r from the axis of the load, the variation of z    can be plotted from the 
relation. 

  
 In the above expression the radial distance re associated with KB is constant.  Hence 
various values of Z and r/Z  can be    selected and KB can be  found.  Then z  can be computed 
which will be proportional of KB/Z2.  A table can be prepared as under.  
Fig  shows the vertical stress distribution on a vertical line at distance r from the axis of loading 
the vertical stress first increases attains a maximum values and then decreases.  It can be shown 
that the maximum value of z  on a vertical line is obtain at the point of intersection of the 
vertical plane with a radial line at  =  39o 15’ through the point load as shown in fig ..  The 

corresponding value of  
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  KB = 0.1332 

Hence  
6.Find the intensity of vertical pressure and horizontal shear stress at point 4m directly 
below a 20 KN point load acting at a horizontal ground surface what will be vertical 
pressure and shear stress at a point 2m horizontal away from the axis of loading but at the 
same depth of 4m. 
Solution 
 Given 
  r = 0 
  Q = 20 K N 

   
 

From equation 3.3  
 
    = 0 (sine r = 0)  
 

 Alternatively, from table 3.1  
 

   
 

  r = 2 m: z = 4 m   ;    
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Alternatively, 

  

  

  
7.Prove the maximum vertical stress n a vertical line at a constant radial distance r from 
the axis of a vertical load is induced at the pint of intersection of the vertical line with a 
radial line at  = 39o 15’ from the point of application of concentrated load.  What will be 

the value of shear stress at the hence or otherwise  find the maximum vertical stress on a 
line situated at r = 2 m from the axis of a concentrates load of  value 20 KN. 
 
 Solution  
 We have  
 

  
 
 For the maximum value of z  (where r is constant) differentiate equation 3.2 with respect 
to ‘Z’ and equate it to zero. 

  
 

  

 from which    3.2 

  

Substituting the value of  and  in equation 3.12 we get. 
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   13.13 

  
 

  
 

Where r = 2 m and Q = 20 KN,   
 
    z = 1.225 r = 2.45 m 
 

  
8. Explain the Vertical Pressure under a uniformly loaded circular Area 
 The Bussinesq equation for the vertical stress due to signal concentrated load can now be 
extended to find the vertical pressure loaded circular area fig Shows a uniformly loaded circular 
area of radius a and load intensity q  per unit area.  Assume the soil as an elastic isotropic semi –
infinite mass. 
 Consider an elementary ring of radius r and width r on the loaded area.  If the 
elementary ring is further divided in small parts each of area A the load on each elementary 
area will be of A.  This load may be considered as a point load.  Hence the vertical pressure at 
point P, situated depth z on the vertical axis through the centre of the area is evidently given by 
equation 3.2 
 

  
 
 Integrating over the entire ring of radius r1 the vertical stress  is given by  
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 the total vertical pressure z  due the entire loaded area is given by integrating the above 
expression between the limits.   
 
  r = 0  and   r =  a 
 

   
 
 put  r2  + Z2   = n2  ; so that r dr  = n dn. 
 Limits  =   when r  = 0  and n = z 

  When r = a and  
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   
 

   
 

    3.15 
 

      3.16 
 
where  KB =  Boussineqa influence factor for uniformly distributed  circular load. 
 

  3.16.a 
 
 Table 3.5 given the value of the influence factors for various values of  q/z.  The vertical 
pressure at a given depth on the vertical axis through the centre of the circular loaded area can be 
found by multiplying the influence factor by the load intensity q.   For the vertical pressure at 
any point not situated under the centre of the circular load,  
  
 
If  is the angle which the line joining the point  P‘ makes with the outer edge of the  loading 

equation 3.15  reduces to  

   
 
 fig shows a family of  isobars under a uniform loaded circular area first presented by 
jurgenson (1934). 
 With the help of this diagram the vertical pressure of various points below a circular load 
area can be conveniently determined. 
 
9. Explain the Vertical Pressure Due To a Line Load. 
 
 Let us consider an infinitely long line load of intensity ‘q’ per unit length, acting on the 
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surface of a semi-infinite elastic medium.  Let the y –axis be directed along eh direction of the 
line load, as shown fig..  Let us fine the expression for the vertical stress at any point ‘P’ having 

co-ordinates (x, y, z) 

The radial distance of point    the polar distance of point P 

  
 Consider a small length y along the line load the elementary load n this length will be 
equal to q’.  y which can be considered to be a concentrated load hence the vertical  stress 

 due this elementary load is given by, 

   

   

     3.18 
 
 In the above expression x and z are constants for a given position of a point P and the 
only variable is y.  Also , x is the  horizontal distance of point ‘P’ from the line load, in direction 

perpendicular to the line load when the point ‘P’ is situated vertically below the line load, at a 
depth Z, e have x = 0 and hence the vertical stress is given by  

      3.19 
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10. Explain the Vertical Pressure under Strip Load. 
 Fig shows an infinite strip of width B, loaded with uniformly distributed load intensity of 
per unit area.  Let us find the vertical pressure at a point P situated below a depth Z on a vertical 
axis passing through the centre of the strip. 
 Consider a strip load of width dx at distance x from the centre.  Te elementary strip of 
width dx will be q.dx.  The vertical pressure at P due to this elementary line load is given by 
equation 3.18. 
 

  
 Total vertical pressure due to the whole strip load is given by. 

  

 put     
 

   
 

  
 
 Table 3.6 gives vertical pressure at different depths below the centre of a uniform load of 
intensity q and width B. 
 
 
11. Explain The Vertical Pressure Under A Uniformly Loaded Rectangular Area: 
 
 Let us take the case of a rectangular load area of length 2 a and width 2b, and let the 
reference axes pass through the centre of the area as shown in fig.  Let the point ‘P’ where 

vertical stress has to be fond have to co-ordinates (x, y,  z) 

 Consider an elementary area  and let the dx and y co-ordinates of the centre 

of this elementary area be    and  respectively.  Evident l , the x and y co-ordinates of point 

P with respect to the elementary area will be   and (y - )  respectively.  Hence the polar 
distance R between the elementary load and point P is given by 
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The vertical stress  at P due to this elementary load  is given by 
Equation 3.2 
 

  
  
 Hence the vertical stress at P, due to the entire loaded area  is given by 

   
 
 
 
 Florin (1959,61) obtained the above integral  However the integral is for too lengthily  to 
be of partical value .  A more practical case is the vertical stress (Z) under the center of the 
rectangle (x = y = 0) 

    

  3.21 
 
 The above expression can now be utilized to find the vertical stress under the corner of a 
rectangular area of size a, b from principle of super position the vertical stress under the corner, 
of eh rectangle of  size  a, b will be one quarter of the above expression. 
 

      
           3.22 

 3.23 
Where Ks = Steinbrenner (1936) influence factor given by curves of fig  
 
 A more common from of the vertical stress under the corner of a rectangular area of size 
a, b is as follows. 
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            3.23 
 

    3.24     

  
 Where, K = influence factor.  Table 3.7 gives the values of influence factor K.  In the 
above formulate a and b or m and n are inter changeable.  The above form of solution is after 
new mark (1935) 
 
 Equation 3.24 can also be utilized for   vertical stress at a point ‘P’ not situated at the 

corner of the rectangle, but below some other point ‘A’ either inside or outside the rectangle as 

shown in fig 3.11 and 3.12 when the point A is inside the rectangle the vertical stress at point P, 
vertical below A at depth Z is given by 
 
 
 

    3.25 
 
where K1,  K2, K3, K4 are the  influence factors for the  four rectangles 1,2,3 and 4 similarly if the 
point A is outside the loaded rectangle, construct the four rectangles as shown in fig 3.12.  The 
shaded area in the loaded rectangle ma be considered to be the algebraic sum of the four 
rectangles each with the corner at A; 
 
 Area       abcd      =   Ab1Cd1  +   Ab1b a2   -    Aa1  dd1  + A a1 a a2   
 
  z   at A = q (K1  - K2  - K3  + K4)          3.26 
Where 
 K1 = Influence factor for area A b1  cd1 

 K2 = Influence factor for area A b1  ba2 

 K3 = Influence factor for area A a1 dd1 

 K4 = Influence factor for area A a1  aa2 

 
12. a. Explain the Equivalent Point Load Method 
 This is an approximate method of calculating the vertical stress at any point due to any 
loaded area.  The entire area is divided into a number of small area units and the total distributed 
load over a unit area is replaced by a point load of the same magnitude acting at the centroid of 
the area unit.   
 Thus, the distributed load over the whole area is replaced by a number of point loads 
situated at the centroids of the various area units.  The influence factors for each of these load 
positions can be found with respect to the point P where z is to be determined.  The vertical 
stress is then given by  

        3.27 
 If all the points loads are of equal magnitude Q1 
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    3.28 
Where, 

  Sum of the individual influence factor for the various area units. 
  
 The accuracy of the result will depend upon the size of the area unit chosen.  If the length 
of the side of the small area unit is less than one-third of the depth at which vertical pressure is 
required, the error involved in the result is within 3 percent. 
 
 
 
 
 
 
 
12..b Explain the Newmark’s  influence chart 
  A more accurate method of determining the vertical stress at any point under a 
uniformly loaded area of any shape is with the help of influence chart or influence diagram 
original suggested by Newmark (1942). A chart, consisting of number of circles and radiating  
lines, is so prepared that the influence of each area unit (formed in  the shape of a sector between 
two concentric circles and two adjacent, radial lines) is the same at the centre of the circles, i.e., 
each area unit causes the equal vertical stress at the centre of the diagram. 
  
 
Let a uniformly loaded circular area of radius r1 cm be divided into 20 sectors (area units ) as 
shown in fig. 13.14.  If q is the intensity of loading, and z is the vertical pressure at a depth Z 

below the centre of the area, each unit such as OA, B, exerts a pressure equal to  at the 
centre. 
 
Hence, from equation 3.15 
 

   3.29 
 
 
where if = influence value 
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 If if be made equal to an arbitrarily fixed value say 0.005,  
 
 We have  
 

        13.30 
 
 Selecting the value of Z = 5 cm (say), the value of r1 solved from equation 13.30 comes 
out be 1.35 cm.  Hence if a circle is drawn with radius r1 =  1.35 cm and divided into 20 equal 
area units, each area unit will exert a pressure equal to 0.005 q intensity at a depth of 5cm. 
 Let the radious of second concentric circle be equal to r2 cm.  By extending the twenty 
radial lines, the space between the two concentric circles is again divided into 20 equal area 
units; A1 A2  B2 B1 is one such area unit.  The vertical pressure at the centre, due to each of these 
area nits is to be intensity 0.005 q.  Therefore, the total pressure due to area units OA, B1  and 
A1A2B2B1 at depth z = 5  cam below the centre is  2 x 0.005  q.  Hence from equation 3.15 
 Vertical pressure due to OA2 B2 
 

   
 
 Substituting z = 5 cm, we get r2 = 2.00 cm from the above relation.  Similarly, the radii of  
3rd , 4th , 5th 6th 7th 8th 9th  circles can be calculated as tabulated in table 13.8.  The radius of 10th 
circle is given b the following governing equation: 
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 From the above r10 = infinity. 
 Fig shows the influence chart drawn on the basis of table 3.8 
To use the chart for determining the vertical stress at any point under the loaded area, the plan of 
the loaded area is first drawn on a tracing paper to such a scale that the length  ABH ( = 5 cm) 
drawn on the chart represents the depth to the point at which pressure is required.  For example, 
if the pressure is to be found at a depth of 5m, the scale of plan will be 5cm = 5m , or 1cm  = 1m.  
The plane of the loaded area is then 30 placed over the chart that the point below which pressure 
is required coincides with the centre of the chart.  The point below which pressure is required 
may lie within or outside the loaded area.  The total number of area units (including the fractions 
covered by the plan of the loaded area is counted.  The vertical pressure is then calculated from 
the  relation) 

        3.31 
where, NA =  number of area units under the loaded area. 
 
13. A rectangular area 2m  x 4m  carries a uniform load of  80 KN/m2 at the ground surface 
find the vertical pressures at 5m below the centre and corner of the loaded area.. 
Solution 

(a) For the point under the centre of the  area , there will be influence of four  rectangles 
of size  1m x 2m having a common corner at the centre of the loaded rectangle. 

  a = 1 m,  b = 2 m. 

   
 
  KB1 (for one quadrant)  = 0.0328 

   
 

(b) for the point under the corner of rectangle; 
 
  a = 2 m;  b = 4 m 
 

     
  KB = 0.0931 

   
14. A rectangular area 2m  x 4m  carries a uniform load of  80 KN/m2 at the ground surface 
find the vertical pressures at 5m below the centre and corner of the loaded area.. Solve the 
problem by the equivalent load method. 
Solution: 
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 Divide loaded area into four equal rectangular of size 1m x 2m .  Each area will represent 
a point load Q1 = 1 x 2 x 80 = 160 KN acting at its centroid 
(a) for the point under the centre 

Te influence of each area unit will be equal 

  

  
 

 KB = 0.4247 
 
 

  

  
By exact method = 10.5  KN/m2 (for 15 problem) 

 % error  
(b) For the point under corner B  
 The influence of each area unit will be different.  Let r1, r2r3, r4 be   the radial distance of 
centroids of each unit from B. 

 The corresponding value of   and KB are as under: 

 Area unit   r     KB 
 
 1  1.117   0.223  0.4247 
 2  3.040   0.608  0.2174 
 3  3.360   0.672  0.1880  
 4  1.800   0.360  0.3521  
 

             
 

  
 But by exact method  

  

 % error  
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15. A rectangular area 2m x 4m carries a uniform load of 80 KN/m2 at the ground surface 
find the vertical pressures at 5m below the centre and corner of the loaded area. Using 
Newmark’s influence chart.  
Solution: 
 
 Z = 5 m 
 Hence the scale of the plan will be  
  AB (= 5 cm) = 5m     or 1 cm = 1m 

(a) The plan of the rectangular area is drawn to the scale of 1cm = 1m, and oriented on 
the chart in such a way that is centroid is over the centre of the diagram. 

Number of area unit under the rectangle = NA    = 25.5 Units. 
  z under the centre of area = 0.005   x   qNA 
   =  0.005 x 80  x 25.5  = 10.2  KN / m2 
 

(b) The plan of the rectangular area is then oriented in such a way that is of its corner is 
above the centre of chart.  Then  

NA = 18.5 Units. 
 z  under corner of area  = 0.005  x 80  x 18.5 
     = 7.4 KN/m2 

 
 
16. Explain the Westergaard’s Analysis? 
 Westergaard (1938) also solved the problem of pressure distribution in soil under point 
load, assuming the soil to be an elastic medium of semi-infinite extent but containing numerous 
closely spaced, horizontal Sheets of negligible thickness of an infinite rigid material which 
permits only downward deformation on the mass as a whole without allowing it to undergo any 
lateral strain. 
 
 Te assumption of no lateral displacement implies that  

  

And volume dilatation =   
 Where u, v and  are displacement in x, y and z directions.  The stresses on a horizontal 
plane, which are now simply function of vertical displacement are given by 

   3.31.a 

where,G = Shear modulus  

       3.31.b 
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 and     3.31.c 
 Substituting these into equilibrium equations in the vertical direction.  We get  

  3.32 

where  ,   and   3.33 
 
 For the point load Q applied at the origin of   the co-ordinates, 
 Westergaard   obtained, 
 

   3.34 
 where R2  =  r2  +  Z2  =  x2  +   y2  + 2 Z2. 
 Substituting in equation    3.21  a, we get 

    3.35 
 The value of  varies from  0 to 0.5 for elastic materials, For a case of large lateral 

restraint, the lateral strain is very small and   maybe assumed as zero,   then reduces to. 
 

   3.36 
where Kw = Westergaard influence factor  

     3.37 
17. Explain the Contact Pressure? 
 Contact pressure is defined as the vertical pressure acting at the surface of contacts 
between the base of a footing and the underlying soil mass.   
 To simplify design, the computation of the bending moments etc. in the footings is 
commonly based on the assumption that the footing rest on a uniformly spaced bed of sprig so 
that the distribution of contact pressure is uniform.  The actual contact pressure distribution, 
however, depends upon the flexural rigidity of the footing and the elastic properties of the 
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subgrade.   
 If the footing in flexible, the distribution of contact pressure is uniform irrespective of the 
type of the subgrade or under–soil material.  If the footing is perfectly rigid, the contact pressure 
distribution depends upon the type of the subgrade.  Fig shows the pressure distribution under 
rigid footing resting over (a) real, elastic material (such as saturated clay) and (b) cohesion-less 
sand and (c) soil having intermediate characteristics. 
 
 
 
 
 

 
 In the case of a real elastic material, theoretical intensity of contact pressure at the centre 
is q/z and infinite at the outer edges.  However, local yielding causes redistribution of pressure 
making it finite at eh edges.  When the loading approaches a value sufficient to cause failure of 
soil, the contact pressure distribution may probably be very nearly uniform.   
 In the case of sand, no resistance to deformation is offered at the outer edges of the 
footing, making the contact pressure zero there.  The pressure distribution is parabolic with 
maximum value at the centre, through it tends to become more uniform with increasing footing 
width.  
                When a footing is neither perfectly flexible, nor perfectly rigid and the underlying soil 
possesses both cohesion and friction, the contact pressure lies between the extreme conditions for 
uniform and nonuniform distribution for flexible and rigid footings. 
 
 
\ 
18.a. Explain The One Dimensional Consolidation: 
 When a compressive local is applied to soil mass, a decrease in its volume takes place.  
The decrease in the volume of soil mass under stress is knows as compression. 
 Every process involving a decrease in the water content of a saturated soil without 
replacement of the water by air is a called process of consolidation.   
 
 The compressibility of clays may also be caused by three factors 

i. To expulsion of double layer water from between the grains 
ii. Slipping of the particles to new positions of greater density 
iii. Bending of particles as elastic sheet.  The clay buy very small. 

 
18.b.Explain The Consolidation Process : Spring analogy 
 
 Let the length of the spring be Z0 under a pressure of 10 unit it 12 units pressure are 
added to it top.  The spring will be compressed immediately to a length Z1  A further application 
of load will  result in further decrease in the length of the spring with elastic limit load diffusion 
curve may be assumed to be straight.  If this spring and piston is placed in a cylinder containing 
water will be tree to stress since the whole load is carried by the spring alone.  It of stress sine the 
whole load carried by the spring alone.  If the pressure on the piston is increased to 12 units. 
Valve is closed the spring cannot design since water is incompressible.  Hence the additional 
total pressure 1. 



       
 Now the value be opened slightly so that some water escapes and then valve is closed.  
Due to escape of some water the position moves down,, the spring is compressed and hence 
some pressure out of pressure of 2 units entirely burns by water is now transferred to the spring. 

  
ere  is the transfer of pressure from water to the spring corresponding to a given amount of 
expulsion of water.  If the valve is fully opened. Sufficient water will escape till the length of 
spring is reduced to a height of Z1 

 
     12 = 12  + 0 

       
 
 Thus we see that when there is a pressure increment, the whole of pressure is first taken 
by water.  As the water escape out of the system.  The load transfer takes place form water the 
spring till the spring is deformed by the full amount corresponding to the applied stress 
increment.  
  This analogy can be applied stress increment.  This analogy can be applied consolidation 
process of a soil mass consisting of soil water system.  The grain structure represents the spring 
while the voids filled with water represent the cylinder. 
 The pressure that builds up in pore water due to load increment on the soil is termed 

excess pore pressure or excess hydrostatic pressure or hydrodynamic pressure   , because it is 
excess of the initial pressure in water under to clear out of the voids.  No more water escapes 
from the voids and condition of equilibrium is attained.  The delay caused in consolidation by the 
slow drainage of water out of a saturated soil mass is called hydrodynamic lag. 
 
19. Expalin the Consolidation of Laterally Confined Soil? 
 If a remoulded soil is laterally confined in a consolidometer consisting of a metal ring 
and porous stones are placed both at its top and bottom faces the compression or consolidation 
sample takes places under a vertical pressure applied on the top of porous stones.   
 The porous stones provide free drainage of water and air from or into the soil sample.  
Under a given applied pressure a final settlement and equilibrium voids ratio is attained after 
certain time.  At the equilibrium stage the applied pressure naturally becomes the effective 

pressure   on the soil.  The pressure can be increased end a new equilibrium voids ratio is 

attained.  Thus a relationship can be obtained between effective pressure   and the 

equilibrium voids ratio (e) curve   pressure is completely removal compression 
mainly due to some irreversible orientation undergone by the sail particles under compression of 
the soil is again put under compression, a recompression curve such CD is voids ratio at D being 
always less than that at B at some pressure 300 KN/m2 pressure increments.  DE B portion curve 
represents the compression of a soil which has not been subcided it the pressure. 
 

  
where, 
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  initial voids ration corresponding initial. 

 e  = , Voids ration at increased pressure   
 Cc = Compression index. 
 
The compression index represents the slope of the linear portion of pressure voids. 
 

  
 

  
 

  
 
 Cs = expansion or succeeding index. 
 
Consolidation tests on a number of class  
 

  
 
 For a ordinary clay of medium to low sensitives.  
 

   
 
 Coefficient of compressibility a v 

 

   
 
 For a given difference in pressure the value of coefficient of compressibility  
 
 Co efficient of volume change  
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 when the soil is laterally  confined, the  changes in the volume is proportional to change 
in the thickness H  and initial volume is proportional initial thickness H0. 
 

   

   
 
20. Explain the Terzaghi’s Theory of One Dimensional Consolidation? 
 Te theoretical concept of the consolidation process was developed by Terzaghi in the 
development of the mathematical statement of the consolidation process. The following 

1 soil homogenous and fully saturated  
2 Deformation of the soil is due entirely to change in volume 
3 Darcy’s law for the velocity of flow of water through soil is perfectly valid. 
4 Coefficient of permeability is constant during consolidation 
5 Load is applied deformation occurs only in direction  
6 The change in thickness of the layer during consolidation is insignificant. 

 
Figure shows,a Clay layer of thickness H between two layer of sand which serves as 

drainage face.  When the layer is subjected to a pressure increment  excess hydrostic 
pressure application whole of the consolidating pressure  is carried by the pore water 
so that hydrostic pressure to is a0 equal    .   

     (i) 

    (ii) 
 

    (iii) 
 
 Change of velocity along depth layer. 

      (iv) 

 The velocity of the exist will be equal to  

ave 



1

01 e

av
mv




1
0

1






H

H
mv

1
0  mvHH

1







u
h 

z

u

z

h
i













1

z

uK
KiV







2

2

z

aK

z

v












dx
z

v
V








 The quantity of  water leaving soil elements 
 

      (v) 
 

     (vi) 
 

     (vii) 
 

    (viii) 
 

      (viii) 
 

   
 
 

      (ix) 
(i) and (ix) 

 

 
 (iv) and (x) 
 

  
 

  
 Cv = Coefficient of consolidation 
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 Basic differential equation of consolidation which related the rates of changes of excess 
hydrostic   pressure is the rate of expulsion of excess proves loaded form a unit volume of soil 
during the same time interval.  The term coefficient of consolidation ev used in the equation is 
adopted to indicate the combined effects of permeability and   compressibility of  soil on the 
rates of volume change Cv  on cm2 / sec. 
 



21. Explain The Solution Of The Consolidation Equation: 
 The solution of the differential equation of consolidation is obtained by means of the 
Fourier  series 

 i. At  t = 0 at distance   z,  

 ii. At   t =   

 iii. At   t = t  at z = 0,  

  at Z = H,     

        (1) 
 written as 

   

   
 The left hand term does not contain t and hence is constant if t is considered variable.  
Similarly the right hand term is constant Z variable constant (say – A2) 

       (3) 

eq : (3)   & (4)      (4) 
 

     (5) 
 

       (6) 
 
  
 
C1,  C2,  C3  = arbitrary constant  
 
     base of hyperbolic 
 
   
 Equation (1) becomes  
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 time  : t 
 

  z = 0  ;    ; cu = 0 
 
 equation (7) 
 

     (8) 
 

 to ar   z = H,    
 

      (9) 
 
equation (9) 
 
  AH = n ,  where    

  
 
   

  
 
 

  
   

 t = 0,      and   
 

  

  sin ax dx = 0    (10) 
 

     (11) 
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 where m and n varied  x changed  to  

    (12) 
 

     (13) 
 
 Sides   intensity limit  0 to H. 
 

 (14) 
 

 Multiplication   
 

 Hence  
   

       (15) 
 

  (16 ) 
 

  (17) 
 
 n = even  1 – cos  n  = 0 
 n =  odd  1 – con n = 2 
 

  
 
 

,
H

z
dz

H



0sin
0

 dz
H

zn

H

zm
Sin

H


20

2 H
dz

H

zn
Sin

H




  




H H

n

m

m
m

H

dz
H

zn
SinBdz

H

zn
Sin

H

zM
SinBdz

H

zn
Sinu

0 0

2

10

0



H

zn
Sin



20

0

H
Bdz

H

zn
Sinu n

H




dx
H

zn
Sinu

H
B

H

n



0

0

2

Cvt
H

e

H

zn
Sindz

H

zn
Sinu

H
u

nn

n

H

2
1 0

0

22

2  


















 

  Cvt
H

n

H

zn
SinCosn

n
u

n

n
2

22

1

1
2 




 

















 
   

tCv
H

N

H

zNSin

Nn
u

N

N

.
1212

12

14
2

22

1












 


 







  
 

   effective pressure 
 

  
 

  
 

  
 

  
 
 At t =    
 
  Pf given by 
 

   
 
 The ratio P to p f,    
 

   
 

  
 

  
 

  

   
 

  

dzmvp
1

 1p

u 

 dzumvP  

  

H

dzumvP
0



 

 







 



 





N

N

Cvt
H

N

N
HmvP

0
2

22

22

12

12

18
1






HmvP
f



100% 
fp

P
u

 

 
100.

12

12

18
1%

0
2

2

22







 



 





N

N

tCv
H

N

N
u



2d

Cvt
Tv 











2

H
d

 

 
100

4

12

12

18
1%

0

2

22














 





N

N

Tv
N

N
u



 Tvfu %



 
 The degree of consolidation time function 

   
 
Approximate equation Tv 
 

   
 

 when  

 when   
 

i. Table values of time factor 
ii. Double drainage with all inner distribution of consolidation pressure. 
iii. Single drainage with  uniform distribution of consolidation 

 
 

u (%)   Tv  u(%)   Tv 
 
5   0.002  55   0.235 
 
10   0.008  60   0.287 
 
15   0.018  65   0.342 
 
20   0.031  70   0.403 
 
25   0.049  75   0.477 
 
30   0.071  80   0.567 
 
35   0.096  85   0.684 
 
40   0.126  90   0.848 
 
50   0.197  100       

 
values of time factor for single drainage 
 
22. Explain the Laboratory Consolidation Test 
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 The Laboratory consolidation test is conducted with an apparatus known as.  
Consolidometer, consisting essentially of a loading frame and consolidation call in which the 
specimen in kept.  Porous stones are put on the top and bottom ends of the specimen. 
 Fig.   a and fig b show the fixed ring cell and floating ring cell, respectively.  In the fixed 
ring cell, only the top porous stone is permitted to more downwards as the specimen compresses.  
In the floating ring cell, both top and bottom porous stones are free to compress the specimen 
towards the middle. 
 Direct measurement of permeability of the specimen at any stage of loading can be made 
only in the fixed ring type.  However, the floating ring cell has the advantage of having smaller 
effects of friction between the specimen ring and the soil specimen. 
 The loading Machine is usually capable of applying speedy vertical pressure, such as 10, 
20, 50, 100, 200, 400, 800, 1000 kN/ m2 (kPa) and each  pressure increment is maintained 
constant until the compression virtually ceases, generally  24 hour.  It is measured by means of a 
dial gauge. 
Dial gauge readings are taken after the application of each pressure increment of the following 
told elapsed times : 
 0.25,, 1.00,, 2.25,   4.00,   6.25 ,     9.00,   12.25,   25,   36,  49,  60  minutes. 
 The dial gauge readings showing the final compression under each pressure increment are 
also recorded.  After the completion of consolidation under the desired maximum vertical 
pressure, the specimen is unloaded and allowed to swell.  The final dial reading corresponding to 
the completion of swelling it recorded and the specimen is takes out and dried to determine its 
water content and the weight of soil solids. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-IV 

 

SHEAR STRENGTH 

 



         Shear strength of cohesive and cohesiveness soils-Mohr, Coulomb failure theory -Saturated soil and 

unsaturated soil (basic only)-Strength parameter-Measurement of shear strength, direct shear, Tri axial 

compression, UCC and Vane shear tests-Types of shear stress tests based on drainage and their 

applicability -Drained and un-drained behavior of clay and sand-Stress path for conventional tri axial 

test. 

Two mark questions and answers 

 

1. What are the tests available for determine the shear strength? 

a) Direct shear test 

b) Tri axial Shear test 

c) Unconfined compression test 

d) Vane shear test 

1. What are the advantages for direct shear test?  
2. As test progress, the area under shear gradually decreases. The corrected area at failure 

should be used in determining the values of σ and . 
3. As compare to tri axial test, there is little control on the drainage of soil.  
4. The plane of shear failure is pre determined which may not be the weakest one. 

5. What are advantages of tri axial tests? 
1) The shear test under all the three drainage conditions can be performed with complete 

control 

2) The precise measurements of the pore pressure and volume change during the test are 

possible. 

3) The stress distribution on the failure plane is uniform 

4) The state of stress with in the specimen during any stage of stress, as well as at failure is 

completely determines. 

6. If angle of internal pressure of a soil is 360. Find the angle made by failure plane with respect 
to minor principle plane. 

The angle made by failure plane with respect to minor principle plane 

=   

=270. 

4. C and Φ are not fundamental parameters. But only mathematical parameters of soil. Why? 



2

3690 



Research showed that the parameters C and Φ are not necessity fundamental properties of t he 

soil as was originally assured by Coulomb. These parameters depend upon a number of factors, such as 

water content drainage conditions. 

The current practice is to consider C and Φ as mathematical parameters which represent the 

failure conditions for a particular soil under conditions. That is the reason why C and Φ are now called 

cohesion intersects and angel of shearing resistance. 

 

 

 

 6. What are pore pressure parameters and write down skempton’s pore pressure equation? 

Pore pressure parameters express response of pore pressure due change in the total stress 

under un-drained condition. 

 

Skempton’s pore pressure equation  

u= B ( + A( - ) 

Where A and B are the skempton’s pore pressure parameters. 

7. State coulombs equation for determination of sear strength of soil  both for total and effective 

stress condition. 

1. for total stress  

Shear strength  

 Where, c-cohesion  

  - Total stress  

  - Angle of internal friction 

2. for effective stress  

 Shear strength,  

 Where, = effective stress  

  3  1  3




tanCf


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8. What are limitations of direct shear test? 

 1. The stress conditions are known only at failure .the conditions prior to failure are undermine 

and there, the Mohr circle can not be drawn 

 2. The stress distribution on the failure is not uniform .the stress are more at the edges and lead 

to the progressive failure, like tearing of a paper. 

 3. The area under shear gradually decreases as the test progress. But the corrected area cannot 

be determined and therefore, the original area is take is for the computation of stress. 

 4. The orientation of the failure plane is fixed .the plane may not be the weakest plane. 

9. Define: normally consolidated soil 

 A normally consolidated soil is which had not been subjected to a pressure greater than the 

present exiting pressure. 

10. Define:  over consolidated soil 

 A soil is to be over consolidated it had been subjected it had been subjected in the past to a 

pressure in excess of the present pressure. 

 

11. What are the basic components are constituted in shearing resistance of soil ? 

 The shearing resistance of soil is constituted basically of the following components: 

 (1) The structural resistance to displacement of the soil because of the interlocking of the 

particles,  

 (2) The frictional resistance to translocation between the individual soil particles at their contact 

points, and  

 (3) Cohesion or adhesion between the surfaces of the soil particles. 

 

 

16 mark questions and answers 

 

1. Explain the mohr’s stress circle 



Through a point in a loaded soil mass, innumerable planes pass and stress components on each 

plane depends upon the direction of the plane. It can be shown that there exist three typical planes, 

mutually orthogonal to each other, on which the stress is wholly normal and no shear stress acts.  

These planes are called the principal planes and the normal stresses acting on these planes are 

called the principal stresses. In the order of decreasing magnitude of the normal stress, these planes are 

called major, intermediate and minor principal planes and the corresponding normal stresses on them 

are called major principal stress 1, intermediate principal stress 2 and minor principal stress 3. Many 

problems in soil engineering can be approximated by considering two dimensional stress conditions.  

 Fig.   Shows a soil element subjected to two dimensional stress system. From the consideration 

of the equilibrium of the element, one gets the following expressions for the normal stress  and 

shearing stress  on any plane MN inclined at an angle α with  

The x direction:  

      … (4.1) 

 

 

And     … (4.2) 

Where y and x = normal stresses on planes perpendicular to y and x axes, respectively  

(y > x)   xy (=yx) = shear stresses on these two planes 

Squaring Eqs. 4.1 and 4.2 and adding, we get the following results: 

                                        … (4.3) 

 Eq. 4.3 is the equation of a circle whose centre has co-ordinates  

, and whose radius is equal to  

The co-ordinates of points on the circle represent the normal and shearing stresses on inclined 

planes at a given point. This circle is known as Mohr’s circle of stress (Mohr, 1870). 
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 To draw the Mohr circle, the normal stresses x and y are marked on the abscissa, at points B 

and A and a circle is drawn with point C, mid-way between A and B, as the centre, with radius equal to 

CB1=CA1 where BB1 and AA1 are the perpendiculars drawn at B and A of magnitude equal to xy. The 

sign conventions are shown in Fig.4.1 (b) Fig.4.1 (c) shows the Mohr circle so drawn. Te co-ordinates of 

any point F (, ) represent the stress conditions on plane which makes an angle α with the x direction.  

 If from a point B1 [Fig. 4.1 (d)] on a circle representing the state of stress on vertical plane, a line 

is drawn parallel to this plane (i.e vertical), it intersects the circle at a point P. Also, if from the point A1 

on the circle representing the stresses on the horizontal plane, a line is drawn parallel to this latter plane 

(i.e horizontal) it will also intersect the circle in the same point P. In general, if through a point F 

representing the stresses on a given plane, a line is drawn parallel to that plane, it will also intersect the 

circle in the point P. The point P is therefore, a unique point called the origin of planes or the pole.  

 

 Let us now take the case of soil element whose sides are the principal planes, i.e consider the 

state of stress where only normal stresses are acting on the faces of the element. Fig. 4.2 (a) shows the 

element, and Fig.4.2 (b) shows the Mohr circle.  

 In Fig. 4.2 (a) the major principal plane is horizontal. Hence the pole P is located by drawing a 

horizontal line through point A [Fig 4.2 (b)] representing the major principal stress 1. This intersects the 

circle at B. If a line PF is drawn through P at an angle α with the horizontal, it will intersect the circle at F 

which represents the stress conditions on a plane inclined at an angle α with the direction of the major 

principal plane.  

 Fig. 4.2 (c) shows an element in which the principal planes are not horizontal and vertical, but 

are inclined to y and x-directions. Fig. 4.2 (d) shows the corresponding stress circle. Point A represents 

the major principal stress (1, 0) and B represents the minor principal stress (3, 0). Hence to get the 

position of the pole, a line is drawn through a, parallel to the major principal plane, to intersect the 

circle in P. Evidently, PB gives the direction of minor principal plane. To find the stress components on 

any plane MN inclined at an angle α with the major principal plane, a line is drawn through P, at an angle 

α with PA, to intersect the circle at F. The co-ordinates (, ) of point F give the stress components on 

the plane MN. Analytical expression for ,  are :   

        … (4.4) 

                                         … (4.5) 

 The resultant stress on any plane is and its angle of obliquity β is equal to tan¹   




 2cos
22

3131 








 2sin
2

31


22  















The maximum shear stress (point G) max is equal to and it occurs on planes with α 

=45°. In Fig. 4.2 (b), PG shows the direction of plane having maximum shear stress. The normal stress on 

this plane will be equal to  

 

2. Explain the Mohr-coulomb failure theory 

 1. Material fails essentially by shear. The critical shear stress causing failure depends upon the 

properties of the material as well as on normal stress on the failure plane.  

 2. The ultimate strength of the material is determined by the stresses on the potential failure 

plane (or plane of shear) 

 3. When the material is subjected to three dimensional principal stress (i.e.1, 2, 3) the 

intermediate principal stress does not have any influence on the strength of material. In other words, 

the failure criterion is independent of the intermediate principal stress.  

 Note. For detailed discussions on various theories of failure, see Chapter 19, where the effect of 

the intermediate principal stress has also been discussed.  

 The theory was first expressed by Coulomb (1776) and later generalized by Mohr. The theory 

can be expressed algebraically by the equation.  

                    … (4.6) 

Where f =s= shear stress on failure plane, at failure = shear resistance of material  

 F () = function of normal stress 

 If the normal and shear stress corresponding to failure are plotted, then a curve is obtained. The 

plot or the curve is called the strength envelope. Coulomb defined the function F () as a linear function 

of  and gave the following strength equation: 

    s = c +  tan       … (4.7) 

Where, the empirical constants c and  represent respectively, the intercepts on the shear axis, and the 

slope of the straight line of Eq. 4.7 Fig . These parameters are usually termed as cohesion and angle of 

internal friction or shearing resistance respectively.  
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 Fig. 4.3 (b) shows the Mohr’s envelope, which is the graphical representation of Eq. 4.6. 

Coulomb considered that the relationship between shear strength and normal stress could be 

adequately represented by the straight line. The generalized Mohr theory also recognizes that the shear 

strength depends on the normal stress, but indicates that the relation is not linear. The strength theory 

upon which the Coulomb and Mohr strength lines are based indicates that definite relationship exists 

among the principal stresses, the angle of internal friction and the inclination of the failure plane. The 

curved failure envelope of Mohr is often referred to as a straight line for most of the calculations 

regarding the stability of soil mass. For an ideal pure friction material, such a straight line passes through 

the origin [Fig. 4.4 (a)]. However, dense sands exhibit a slightly curved strength line, indicated by dashed 

line. Fig. 4.4 (b) represents purely cohesive (plastic) material, for which the straight line is parallel to the 

- axis. The strength of such a material is independent of the normal stress acting on the plane of 

failure. The way in which a straight line is fitted to a Mohr envelope will depend on the range of α which 

is of interest.  

 It can, therefore, be concluded that the Mohr envelope can be considered to be straight if the 

angle of internal friction  is assumed to be constant. Depending upon the properties of a material the 

failure envelope may be straight or curved, and it may pass through the origin of stress or it may 

intersect the shear stress axis.  

 

3. Explain the effective stress principle  

 In Eq. 4.7, it is assumed that the total normal stress governs the shear strength of soil. This 

assumption is not always correct. Extensive tests on re-mould clays have sustained beyond doubt 

Terzaghi’s early concept that the effective normal stresses control the shearing resistance of soils. 

Therefore, a failure criterion of greater general applicability is obtained by expressing the shear strength 

as a function of the effective normal stress  

 

’, given by the equation  :     f = c’ + ’ tan ’     …. (4.8) 

or          f = c’ + ( - u) tan’     …. (4.9) 

where c’ = effective cohesion intercept; and’ = effective angle of shearing resistance 

In terms of total stresses, the equation takes the form: 

 

  

   f = cu +  tan u     …. (4.10) 

Where cu = apparent cohesion; u = apparent angle of shearing resistance.  



 The normal stress’ and shear stress  on any plane inclined at an angle α to the major principal 

plane can be expressed in terms of effective major principal stress 1’ and effective minor principal 

stress 3’ from Eqs. 4.4 And 4.5 as under: 

         …. (4.11) 

    …. (4.12) 

 

 Substituting the values of ’ in Eq. 4.8, we get  

                                    …. (4.13) 

 The most dangerous plane i.e, the plane on which failure will take place is the one on which the 

difference (f - ), between the shear strength and shear stress is minimum. 

 

    Differentiating this with respect to α, we get  

                                           

 

For a minimum   

This gives  cos 2 α = - sin 2α tan ’          or   cot 2α = - tan ’ = cot (90° + ’) 

             α = αf = 45° +       …. (4.14) 

 The above expression for the location of the failure plane can be directly derived from the Mohr 

circle (Fig. 4.5). J F represents the failure envelope given by the straight line f = c’ + ’ tan ’. The pole P 

will be the point with stress co-ordinates as (3’, 0). The Mohr circle is tangential to the Mohr envelope 
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at the point F. PF represents the direction of the failure plane, inclined at an angle αf with the direction 

of the major principal plane. From the geometry of Fig. 18.5, we get from triangle JFK 

2αf = 90° + ’                or        αf = 45° +   

 

 It should be noted that for any combination of the applied principle effective stress 1’ and 3’, 

failure will occur only of the stress circle touches the failure envelope. Also, the coordinates of the 

failure point F represent the stress components’ and f at failure. As it is evident from Fig. 4.5, the f at 

failure is less than the maximum shear stress, corresponding to the point G, acting on the plane PG. 

Thus, the failure plane does not carry maximum shear stress, and the plane which has the maximum 

shear stress is not the failure plane.  

 

 

 

4. Explain the direct shear test.   

 

 This is a simple and commonly used test and is performed in a shear-box apparatus (Fig. 4.6). 

The apparatus consists of a two piece shear box of square or circular cross-section. The lower half of the 

box is rigidly held in position in a container which rests over slides or rollers and which can be pushed 

forward at a constant rate by geared jack, driven either by electric motor or by hand.  

 The upper half of the box butts against a proving ring. The soil sample is compacted in the shear 

box, and is held between metal grids and porous stones (or plates). As shown in Fig. 4.6 (a), the upper 

half of the specimen is held in the upper box and the lower half in the lower box, and the joint between 

the two parts of the box is at the level of the centre of the specimen.  

Normal load is applied on the specimen from a loading yoke bearing upon steel ball of pressure 

pad. When a shearing force is applied to the lower box through the feared jack, the movement of lower 

part of the box is transmitted through the specimen to the upper part of the box and hence on the 

proving ring.  

 The deformation of proving ring indicates the shear force. The volume change during the 

consolidation and during the shearing process is measured by mounting a dial gauge at the top of the 

box. The soil specimen can be compacted in the shear box by clamping both the parts together with the 

help of two screws.  

2
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 These screws are, however, removed before the shearing force is applied. Metal grids, placed 

above the top and below the bottom of the specimen may be perforated if drained test is required, or 

plain if un-drained test is required. The metal grids have linear slots or serrations to have proper grip 

with the soil specimen, and are so oriented that the serrations are perpendicular to the direction of the 

shearing force.  

 The specimen of the shear box is sheared under a normal load N. The shearing strain is made to 

increase at a constant rate, and hence the test is called the strain controlled shear box test. The other 

type of test is the stress controlled shear box test, in which there is an arrangement to increase the 

shear stress at a desired rate and measure the shearing strain. Fig. 4.6 (a) shows the strain controlled 

shear box.  

 The shear force, F, at failure, corresponding to the normal load N is measured with the help of 

the proving ring. A number of identical specimens are tested under increasing normal loads and the 

required maximum shear force is recorded. A graph is plotted between the shear force F as the ordinate 

and the normal load N as the abscissa. Such a plot gives the failure envelope for the soil under the given 

test conditions. Fig. 4.6 (c) shows such a failure envelope plotted as a function of the shear stress s and 

the normal stress. The scales of both s and  are kept equal so that the angle of shearing resistance 

can be measured directly from the plot.  

 Any point F (, ) on the failure envelope represents the state of stress in the material during 

failure, under a given normal stress. In the direct shear test, the failure plane MN is predetermined, and 

is horizontal. Fig. 4.6 (b) shows the stress conditions during failure. In order to find the direction of 

principal planes at failure, we first locate the position of the pole on the Mohr circle [Fig 4.6 (c)] on the  

 

 

principle that the line joining any point on the circle to the pole P gives the direction of the plane on 

which the stresses are those given by the co-ordinates of that point. 

  Hence, through point F a horizontal line (representing the direction of the failure plane) is 

drawn to intersect the circle at the point P which is the pole. Since points A and B represent respectively, 

the major and minor principal stresses, PA and PB give the directions of major and minor principal 

planes.  

 Tests can be performed under all the three conditions of drainage. To conduct un-drained test, 

plan grids are used. For the drained test, perforated grids are used. The same is first consolidated under 

the normal load, and then sheared sufficiently slowly so that complete dissipation of pore pressure 

takes place.  

 The drained test is therefore also known as the slow test, and the shearing of cohesive soil may 

sometimes require 2 to 5 days. Cohesion less soils are sheared in relatively less time. For the 

consolidated un-drained test, perforated grids are used. The sample is permitted to consolidate under 



the normal load. After the completion of consolidation, the specimen is sheared quickly in about 5 to 10 

minutes.  

 

 

Comments on the shear box test.  

The direct shear test is a simple test. The relatively thin thickness of sample permits quick 

drainage and quick dissipation of pore pressure developed during the test. However, the test has the 

following disadvantages: 

 (1) The stress conditions across the soil sample are very complex. The distribution of normal 

stresses and shearing stresses over the potential surface of sliding is not uniform. The stress is more at 

the edges and less in the centre. Due to this there is progressive failure of the specimen i.e., the entire 

strength of the soil is not mobilized simultaneously.  

 (2) As the test progresses, the area under shear gradually decreases. The corrected area (Af) at 

failure should be used in determining the values of  and, . 

 (3) As compared to the tri-axial test, there is little control on the drainage of soil.  

 (4) The plane of shear failure is predetermined, which may not be the weakest one.  

 (5) There is effect of lateral restraint by the side walls of the shear box.  

 

5. Explain the tri-axial compression test     

 

 The strength test more commonly used in a research laboratory today is the triaxial 

compression test, first introduced in the U.S.A by A. Casagrande and Karl Terzaghi. The solid specimen, 

cylindrical in shape, is subjected to direct stresses acting in three mutually perpendicular directions. In 

the common solid cylindrical specimen test, the major principal stress 1 is applied in the vertical 

direction, and the other two principal stresses 2 and 3 (2 = 3) are applied in the horizontal 

direction by the fluid pressure round the specimen.  

 The test equipment specially consists of a high pressure cylindrical cell, made of Perspex or 

other transparent material, fitted between the base and the top cap. Three outlet connections are 

generally provided through the base: cell fluid inlet, pore water out let from the bottom of the specimen 

and the drainage outlet from the top of the specimen.  

 A separate compressor is used to apply fluid pressure in the cell. Pore pressure developed in the 

specimen during the test can be measured with the help of a separate pore pressure measuring 



equipment, such as Bishop’s apparatus shown in Fig. 4.8. The cylindrical specimen is enclosed in a 

rubber membrane. A stainless steel piston running through the centre of the top cap applies the vertical 

compressive load (called the deviator stress) on the specimen under test. 

  The load is applied through a proving ring, with the help of a mechanically operated load frame. 

Depending upon the drainage conditions of the test, solid nonporous discs or end caps, or porous discs 

are placed on the top and bottom of the specimen and the rubber membrane is sealed on to these end 

caps by rubber rings.       

 The length of the specimen is kept about 2 to 2 ½ times its diameter. The cell pressure 3 (=2) 

acts all round the specimen; it acts also on the top of the specimen as well as the vertical piston meant 

for applying the deviator stress. The vertical stress applied by the loading frame, through the proving 

ring is equal to (1-3), so that the total stress on the top of the specimen = ( 1 - 3 ) + 3 = 1 = 

major principal stress.  

 This principal stress difference (1 - 3) is called the deviator stress recorded on the proving 

ring dial. Another dial measures the vertical deformation of the sample during testing. It is desirable to 

maintain the cell pressure reservoir and mercury control apparatus, devised by Skempton and Bishop 

(1950), as shown in Fig. 4.9 (a). For long duration test (lasting about a week or more), self-compensating 

mercury control can be used [Fig. 4.9 (c)].  

 A particular confining pressure 3 is applied during one observation, giving the value of the 

other stress 1 at failure. A Mohr circle corresponding to this set of (1, 3) can thus be plotted. Various 

sets of observations are taken for different confining pressures 3 and the corresponding values of 1 

are obtained. Thus, a number of Mohr circles, corresponding to failure conditions, are obtained. A curve, 

tangential to these stress circles, gives the failure envelope for the soil under the given drainage 

conditions of the test.  

 Shear tests can be performed in the tri-axial apparatus under all the three drainage conditions. 

For un-drained test, solid (nonporous) end caps are placed on the top and bottom of the specimen. In 

the consolidated-un-drained test, porous discs are used. The specimen is allowed to consolidate under 

the desired confining pressure by keeping the pore water outlet open.  

 When the consolidation is complete, the pore water outlet is closed, and the specimen is 

sheared under un-drained conditions. The pore water pressure can be measured during the un-drained 

part of the test. In the drained test, porous discs are used, and the pore water outlet is kept open 

throughout the test. The compression test is carried out sufficiently slowly to allow for the full drainage 

during the test.  

Measurement of pore pressure during the test.  

 It mainly consists of (i) the null indicator, (ii) the control cylinder, (iii) pressure gauge, (iv) 

mercury manometer, and (v) burette. 



 The null indicator consisting of a single straight section of glass capillary tube dipping into an 

enclosed trough of mercury, is connected to the tri-axial cell through valve a by a copper tube, and to 

the contrl cylinder etc. through valve k. An increase in pore pressure in the sample during the test will 

tend to depress the mercury in the limb of the null indicator. This can be immediately balanced by 

adjusting the piston in the control cylinder to increase the pressure in the limb by an equal amount 

which is registered in the pressure gauge. Valves m, f and j are kept closed during the pore pressure 

measurements. In addition to the pressure gauge, a mercury manometer is also provided. This is used (i) 

for negative pore pressure, (ii) for accurate measurement of low positive pore pressure, and (iii) for 

checking the zero error of the pressure gauge.  

When this manometer is connected through valves k and m, valves l and n are kept closed. The 

graduated tube or burette connected to the valve f is used for determining the gauge and manometer 

readings corresponding to zero pore pressure. In the case of fully saturated samples, this graduated 

tube can also be used to measure volume change during the consolidation stage of test in which 

drainage is permitted through the base of specimen (Bishop and Henkel 1957). 

 

 

 

6. Explain the Stress conditions in soil specimen during tri-axial testing. 

  Fig. 4.10 (a) shows the effective stresses acting on the soil specimen during tri-axial testing. The 

minor principal stress and the intermediate principal stress are equal. The effective minor principal 

stress is equal to the cell pressure minus the pore pressure. The major principal stress is equal to the 

deviator stress plus the cell pressure.  

 The effective major principal stress 1’ is equal to the major principal stress minus the pore 

pressure. The stress components on the failure plane MN are ’ and f, and the failure plane is inclined 

at an angle α’ to the major principal plane. Fig. 4.10 (b) shows the failure envelope JF and a Mohr circle 

corresponding to any failure point F. Since JFC = 90° and the failure envelope cuts the abscissa at an 

angle ’, the angle α’ of the failure plane is given by : 

                                 … (4.14 a) 

The principal stress relationship at failure can be found with the help of Fig.4.10 (b)  

FC = radius of Mohr circle = ½ (1’ - 3’) ; OC = ½ (1’ + 3’) ; OK = c’ cot ’ 
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Hence   

 

 

                    … (4.15 a) 

or          

                                          … (4.15) 

or                                     … (4.16) 

or                                     … (4.17) 

or                                        … (4.17 a) 

where   

 Eq. 4.16 or 4.17 gives principal stress relationship. When the soil is in the state of stress defined 

by the Eq. 4.16 or 4.17, it is said to be in plastic equilibrium. In terms of total stresses, 4.17 is written as  

  .. (4..18)  or     .. (418a) 

where     

 In Eq. 4.16, 1‘ and 3’ are known, and the two unknown are ’ and c’. Hence two sets of 

observations are required to determine these two unknown parameters.  In practice, a number of sets 

(1’, 3’) at failure are observed, and Mohr circles are plotted for each set.  A curve drawn tangential to 

these circles gives the failure envelope [Fig. 4 11 (a)]. 
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 Another method of plotting the rest results is in the form of the modified failure envelope which 

is a function for ½ (1’+3’) and ½ (1’ - 3’).  Rewriting Eq.4.15 (a) in the form  

          ½ (1’-3’) and d’+ ½ (1’ + 3’) tan ’ 

and comparing it with Eq. 4.5 a, we observe that 

 

 Sin ’ = tan  ‘……….(18.20  a)   and c’ =                             ……(4..20   b) 

 

 Eq.4.19 representing   the principal stress relationship, is the equation of a straight line having 

its y-coordinate represented by ½ (1’-3’) and x- coordinate represented by ½ (1’+3’). Fig. 4.11(b) 

shows the modified failure envelop, represented by Eq. 419, in which the slope’ and the intercept d’ 

are related to ’ and c’ through Eq. 4.20.   

 The line so obtained is often called the Kf line (Lambe,1969).  The advantage of this method of 

plotting the failure envelope is that the averaging of scattered test results is facilitated to a great extent, 

giving the mean value of the parameters. 

 The calculation of the deviator stress must be done on the basis of the changed area of cross-

section at failure, or during any stage of the relation. 

 

           A2 =  

Where      V1 – initial volume of the specimen; L1 = initial length of the specimen 

            = change in the volume of the specimen 

             =   Change in the length of the specimen 

 

The deviator stress d is given by d =  ;  

   3 = fluid pressure 

 

1 1 = 3+d 
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Knowing 1, E3 and pore pressure. 1’ and 3’ can be determined. 

 

Advantages of tri-axial test: 

  (1)     The shear test under all the three drainage conditions can be performed with   

 complete control. 

(2) Precise measurements of the pore pressure and volume change during the test are 
possible. 

(3) The stress distribution on the failure plane as uniform. 
(4) The state of stress within the specimen during any stage of the test, as well as at failure is 

completely determinate.         
 

7. Explain the un-confined compression test 

 The unconfined compression test is a special ease of tri-axial compression test in which 2 = 3 

=0. The cell pressure in the tri-axial cell is also called the confining pressure. Due to the absence of such 

a confining pressure, the uni-axial test is called the unconfined compression test. The cylindrical 

specimen of soil is subjected to major principal stress 1 till the specimen fails due to shearing along a 

critical plane of failure.  

 In its simplest form, the apparatus consists of a small load frame fitted with a proving ring to 

measure the vertical stress applied to the soil specimen. Fig4.12. (a) shows an unconfined compression 

tester (Goyal and Singh, 1958). The deformation of the sample is measured with the help of a separate 

dial gauge. The ends of the cylindrical specimen are hollowed in the form of cone. The cone seating 

reduce the tendency of the specimen to become barrel shaped by reducing end-restraints. During the 

test, load versus deformation readings are taken and a rap is plotted.  

 When a brittle failure occurs, the proving ring dial indicates a definite maximum load which 

drops rapidly with the further increase of strain. In the plastic failure, no definite maximum load is 

indicated. In such a case, the load corresponding to 20% strain is arbitrarily taken as the failure load.  

 Fig. 4.12. (b), (c) shows the stress conditions, at failure, in the unconfined compression test 

which is essentially an un-drained test (if it is assumed that no moisture is lost from the specimen during 

the test). Since 3 =0, the Mohr circle passes trough the origin which is also the pole.  

 

From Eq. 4.18, we get   1 2cu tan  = 2 cu tan                      …….(4.22) 

 In the above equation, there are two unknowns cu and u, which cannot be determined by the 

unconfined test since a number of tests on the identical specimens give the same value of 1. Therefore, 
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the unconfined compression test is generally applicable to saturated clays for which the apparent angle 

of shearing resistance u is zero. Hence 

                      1 = 2cu      …. (4.23) 

 

 When the Mohr circle is drawn, its radius is equal to 1 / 2 = cu. The failure envelope is 

horizontal. Pf is the failure plane, and the stresses on the failure plane are  

 

 =    ………..(4.24)       and           ….(4.25) 

      

 Where,  qu = unconfined compressive strength at failure. The compressive stress is calculated on 

the basis of changed cross-sectional area A2 at failure, which is given by  

 

                                         

      

Where        V – initial volume of the specimen;  

  L1 = initial length of the specimen 

             =   Change in length at failure.  

 

8. a. Table, gives observations for normal load and maximum shear force for the specimens of sandy 

clay tested in the shear box, 36 cm2 in area under un-drained conditions. Plot the failure envelope for 

the soil and determine the value of apparent angles of shearing resistance and the apparent cohesion.  

 

Normal load (N) Maximum shear force (N) 
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300 

400 

193 

235 

 

Solution 
Fig. 18.13 shows the plot between the shear force F and the normal load N. From the plot, we  

 

Get u = 22°, and total cohesive force = 70 N. 

 

 Unit apparent cohesion N/cm2  

         = 19.5 kN/cm2 = 19.5 kPa. 

 

 

 

 

 

8.b. Samples of compacted, clean dry sand were tested in a shear box,       6 cm x 6 cm and the 

following results were obtained: 

Normal load (N)  : 100  200  300  400 

Peak shear load (N)  :   90  181  270  362 

Ultimate shear load (N) :   55  152  277  300 

 Determine the angle of shearing resistance of the sand in (a) the dense, and (b) the loose 

state.  

 

Solution.  

The value of the shearing resistance of sand, obtained from the peak stress represents the value of  in 

its initial compacted state, while that obtained from the ultimate shear corresponds to the sand when 

loosened by the shearing action.  
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 Fig.4.14 shows the two plots. The values of angles of shearing resistance are found to be : 

(a) dense state  :  = 42° 

(b) loose state   :  = 37° 
 

9. A cylindrical specimen of saturated clay, 4 cm in diameter and 9 cm in over all length is tested in an 

unconfined compression tester. The specimen has coned ends and its length between the apices of 

cones is 8 cm. Find the unconfined compressive strength of clay, if the specimen fails under an axial 

load of 46.5 N. The change in the length of specimen at failure is 1 cm.  

 

Solution.  

 Original length of specimen = 9 cm overall, and 8 cm to apices of cones. Length of cylinder of the 

same volume and diameter (average length) L1 = 8.66 cm. 

  

 Initial cross-sectional area   

 

Change in length at failure, L=1cm 

 

 Area of failure    

 

Unconfined compressive strength   

     

 

= 328 kN/m2   = 328   k Pa 

 Shear strength    
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10. A cylinder of soil fails under an axial vertical stress of 160 kN/m2, when it is laterally unconfined. 

The failure plane makes an angle of 50° with the horizontal. Calculate the value of cohesion and the 

angle of internal friction of the soil.  

 

Solution. 

     10o 

  tan  =tan   

 

As the sample is un-confined, 3 = 0 

 

Now  1 = 3 tan2 + 2 c tan   

 

160 =  2c tan 50° = 2c x 1.192 
 

                      

11. Two identical specimens, 4 cm in diameter and 8 cm high, of partly saturated compacted soil is 

tested in a triaxial cell under un-drained conditions. The first specimen failed at an additional axial 

load (i.e. deviator load) of 720 N under a cell pressure of 100 kN/m2. The second specimen failed at an 

additional axial load of 915 N under a cell pressure of 200 kN/m2. The increase in volume of the first 

specimen at failure is 1.2 ml and it shortens by 0.6 cm, at failure. The increase in volume of the second 

specimen at failure is 1.6 ml, and it shortens by 0.8 cm at failure. Determine the value if apparent 

cohesion and the angle of shearing resistance (a) analytically, (b) graphically by Mohr’s circle.  

 

Solution : (a) For the first specimen : 

Initial area          
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Initial Volume     V1=12.57 x 8 = 100.56 cm3 

 

    Area of failure =   

(b) For the second Specimen.  

Deviator stress at failure    

3 = 100 k N / m 2 ;  1 =  3 +  d = 100 + 524 = 624  k N /m 2
 

Substituting the value of 1 and 3 in Eq 4.18 a,we get 

    

 

(b)    For the second specimen 

A1=12.57cm2; V1 = 100.56cm2; L=0.8; V=+1.6 cm3 

 

 and   

 

   3 = 200 k N / m 2    ;   1 =  3 +  d = 200 + 644 = 844 k N / m 2 

 

Substituting the value of 1 and 3 in Eq. 4.18 a, we get 

   

Solving (1) and (2), we get                                                  ….. (2) 

 C u = 13 .6 k N / m 3  (136 k Pa)                   

And  N=2.2 
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Now  

    u = 22° 

 

 

12. A saturated specimen of cohesion-less sand was tested in triaxial compression and the sample 

failed at a deviator stress of 482 kN/m2 when the cell pressure was 100 kN/m2, under the drained 

conditions. Find the effective angle of shearing resistance of sand. What would be the deviator stress 

and the major principal stress at failure for another identical specimen of sand, if it is tested under cell 

pressure of 200 kN/m2? 

 

Solution. 

 In the drained tests, the effective stresses are equal to the total stress.  

    

  

  

 Fig. shows the Mohr circle (circle 1). The failure envelope will pass through the origin, since c’ =0 

for sand, and will be tangential to the circle. The angle of inclination of the failure envelope give’ = 45°.  

Alternatively, from Eq4.16 

     

       

     

2.2
2

422tan 







 uN




)(2/1003'3 kPamkN

)(25824821003'1 kPamd  











2
'452tan'3'1


 











2

'
452tan100582



 5.67)82.5(1tan
2
'45




       ’=45° 

 For the second specimen with 3’=200 kN/m2, the centre of the Mohr circle passes through 

3’=200 kN/m2, and is tangential to the failure envelope. Circle II corresponds to this, from which d’= 

1160 kN/m2  

    2 = 1’ - 3’ = 960 kN/m2 (960 kPa)  

    Alternatively,  1’ can be calculated from the relation : 

 

 

d = 1164 – 200 = 964 kN/m2 (964 kPa).  

 

 

 

13. Following are the results of un-drained tri-axial compression test on two identical soil specimens, 

at failure: 

 Lateral pressure 3 ( kN/m2)   100  300       

  Total vertical pressure 1( kN/m2)   440  760       

 Pore water pressure u ( kN/m2)   - 20    60       

Determine the cohesion and angle of shearing resistance (a) referred to total stress, (b) 

referred to effective stress.  

 Solution: the circles A and B with dark lines correspond to the total stress, and from failure 

envelope, drawn tangential to the two circles, we get  

  u = 14° and   cu = 110 kN /m2 (kPa) 

For the effective stress analysis, we have  

    1’ : 440 + 20 = 460    and  

    760 – 60 = 700 kN /m2 

3’ : 100 + 20 = 120    and  

300 – 60 = 240 kN /m2 
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The Mohr circles A’ and B’ corresponding to the effective stresses are shown by dotted lines. From the 

dotted failure envelope, we get 

   ’ = 20° , c’ = 76 kN /m2  (kPa) 

 

 

14. Un-drained triaxial tests are carried out on four identical specimens of silt clay, and the following 

results are obtained: 

Cell pressure ( kN/m2)     50  100  150  200       

Deviator stress at failure ( kN/m2)  350   440     530  610   

Pore pressure ( kN/m2)       5     10       12    18    

 Determine the value of the effective angles opf shearing resistance and the cohesion intercept 

by plotting (a) conventional failure envelope from Mohr circles, (b) modified failure envelope.  

 Solution : Table shows the necessary calculations of plotting the failure envelope : 

 

      TABLE  

Specimen No.  3 3’ d 1’ ½ (1’+3’) ½ (1’-3’) 

1 

2 

3 

4 

50 

100 

150 

200 

45 

90 

138 

182 

350 

440 

530 

610 

395 

530 

668 

792 

220 

310 

403 

487 

175 

220 

265 

305 

 

Fig. 4.20 shows the conventional failure envelope from Mohr’s circles, from which we get ’ =29.5° and 

c’ = 8 kN/m2 (kPa).  

 

Fig.4.21 shows the modified failure envelope, from which we get ’=26.5° and d’=70°      

    sin ’ = tan ’ = tan 26.5°   or ’ = 30° 



     

 

 

 

15. Explain the vane shear test  

 

 Vane shear test is a quick test, used either in the laboratory or in the field, to determine the un-

drained shear strength of cohesive soil. The vane shear tester consists of four thin steel plates, called 

vanes, welded orthogonally to a steel rod. A torque measuring arrangement, such as a calibrated torsion 

spring, is attached to the rod which is rotated by a worm gear and worm wheel arrangement. After 

pushing the vanes gently into the soil, the torque rod is rotated at a uniform speed (usually at 1° per 

minute).  

The rotation of the vane shears the soil along a cylindrical surface. The rotation of the spring in 

degrees is indicated by a pointer moving on a graduated dial attached to the worm wheel shaft. The 

torque T is then calculated by multiplying the dial reading with the spring constant. A typical laboratory 

vane is 20 mm high and 12 mm in diameter with blade thickness from 0.5 to 1 mm, the blades being 

made of high tensile steel. The field shear vane is from 10 to 20 cm in height and from 5 to 10 cm in 

diameter, with blade thickness of about 2.5 mm.  

Let    f = unit strength of the soil  

    H = height of the vane  

    D = diameter of the vane  

 

Let us assume that the top end of the vane is embedded in the soil so that both top and bottom 

ends partake in the shearing of the soil. Assuming that the shear resistance of the soil is developed 

uniformly on the cylindrical surface, the maximum total shear resistance, at failure, developed along the 

cylindrical surface  

=  d H f                        …..  (i) 

 To find the maximum shear resistance developed at top and bottom ends, consider a radius r of 

the sheared surface. The shear strength of a right of thickness dr will be 2r dr f . Hence the total 

resistance of both top and bottom faces will be 

)(/81
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        ….. (ii) 

 To total shear strength developed will be equal to the sum of (i) and (ii). The maximum moment 

of the total shear resistance about the axis of torque rod equals the torque T at failure. Hence  

       … (4.27) 

 If only the bottom end partakes in the shearing the above equation takes the from: 

                           …. (4.28) 

 Knowing T, H and d, the shear strength f can be determined.  
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